

 	Contents

 	Introduction

 	Getting Started

 	Grammars

 	Parsers

 	Libraries

 	Code

 Contents

 This guide is organised into the following sections:

 	Contents

 	Introduction

 	Features

 	Getting Started

 	Download and Installation

 	Configuration

 	Dependencies

 	Running

 	Hello World

 	A Simple Grammar

 	Grammars

 	Grammar Languages

 	Rules

 	Primary

 	Grammar Attributes

 	Terminals

 	Rule Reference

 	Sequences

 	Group

 	Option

 	Repetition

 	Empty Sequence

 	Choice

 	Pipeline

 	Predicates

 	Entity

 	Entity Reference

 	Comments

 	Mixing NEBNF and GXML

 	Parsers

 	Input and Output

 	File, Memory and Pipe

 	Streamed Document Object Model

 	Elements

 	Levelling the SDOM

 	Attributes

 	Text

 	Dynamic Elements and Attributes

 	Reading the SDOM

 	Debugging the SDOM

 	Actions

 	Logging

 	Breakpoint

 	Libraries

 	Internal Libraries

 	External Libraries

 	System Runtime Grammars

 	Context Grammar

 	Command Grammar

 	Core Attributes

 	Character Type Library

 	XML Library

 	Utility Library

 	Iconv Library

 	Encoder/Decoder Library

 	Code (under construction)

 	Command Line Interface

 	RESTful Interface

 	JavaScript Interface

 A Common Model for Language Grammars

 NETS is based on ideas described in 'A Common Model for Language Grammars' (Nelms, 2013).

 	Contents

 	Introduction

 	Features

 	Getting Started

 	Grammars

 	Parsers

 	Libraries

 	APIs

 Introduction

 NETS is an experimental product for interpretting and compiling grammars. It is
 based on 'A Common Model for Language Grammars' (Nelms, 2013) and the NEBNF and
 GXML grammars it defines.
 NETS supports some common, and other not so common features, of interpretted and compiled parsers.

 This guide is organised into the following sections:

 	Getting Started

 	Grammars

 	Parsers

 	Libraries

 	Code (under construction)

 Features

 	Feature
 	Description

 	ISO/IEC 14977 Grammars
 	NETS supports the ISO/IEC 14977 standard for grammars. NETS Parser supports the full feature set including rules, terminals, non-terminals, group sequences,
 optional sequences, repeating sequences, exceptions, factors, the empty sequence and comments. Special sequences
 are supported as production terminals.

 	Parser Expression Grammars
 	NETS supports Parser Expression Grammars or PEGs (Ford, 2004) and the 'and'
 and 'not' predicates in particular. In addition NETS introduces the 'again' predicate.

 	Declarative Abstract Syntax Trees based on W3C DOM
 	NETS supports a declarative model of Abstract Syntax Trees (ASTs) based on the W3C DOM model. This model is unified with
 the NETS input/output model. NETS supports Document, Element, Attribute, Entity, Entity Reference, Text,
 ProcessingInstruction and Comment nodes.

 	Grammar XML
 	GXML is an XML representation of language grammars and provides a unified model
 for language grammars including BNF, EBNF,
 PEG and NEBNF. NETS is an implementation of GXML.

 	Pipelines
 	NETS EBNF introduces pipelines, which allow grammars to be chained together in sequences with the output
 of one primary becoming the input to another. Pipelines simplify parsers and grammars.

 	Grammar Libraries
 	NETS supports user defined and system defined grammar libraries in compiled and interpretted forms.

 	Stream Support
 	NETS supports files, pipes and memory streams as well as DOM based ASTs for intput and output.

 	Production Terminals and Echoing
 	NETS supports production terminals in NEBNF and GXML.
 In addition primaries can be echo'd, supporting input/output redirection.

 	Character Encoding
 	NETS supports both multi-byte and wide character encodings for input, output and processing.

 NETS3

 	
 Getting Started

 	
 Grammars

 	
 Parsers

 	
 Libraries

 	
 APIs

 	
 Playground

 	Download and Installation

 	Configuration

 	Dependencies

 	Running

 	Running Tests

 	Version

 	Hello World

 	A Simple Grammar

 Getting Started

 Install, configure and run NETS parser.

 Download and Installation

 To download and install use npm.

 npm -install nets-parser

 The 'node_modules/nets-parser' folder contains the executables and libraries required to run NETS on all supported platforms including:

 	macos-x86-64

 	wasm-wasi-32

 	wasm-node-32

 	wasm-web-32

 Configuration

 Update the paths in nets-parser.js when using the wasm-node-32 build. If required add the node_modules/nets-parser folder to the PATH.

 Executables and scripts are contained in the node_modules/nets-parser root folder. Tests are contained in the tests subfolder.

 Dependencies

 Native executables depend on system libraries. Use lld nets-parser to determine these on Linux or otool -L nets-parser on MacOS. Platform version dependencies are undocumented at present.

 The wasm-wasi-32 build depends on a Web Assembly (WASM) and Web Aassembly System Interface (WASI) runtime such as Wasmtime.
 The wasm-node-32 build depends on node > v12.x.
 The wasm-web-32 build depends on a WASM capable web browser.

 Running

 NETS is started from the command line by invoking the 'nets-parser' executable.

 > nets-parser-macos-x86-64-v1.0 [arguments]

 NETS3 Command Line Interface MacOS-x64-v1.0

 (C) Copyright 2020 NETS3 Ltd

 nets-parser-macos-x86-64-v1.0d is the executable file name on MacOS for the x86 64 bit architrecture, in debug mode.

 To see more detailed logging information set -loglevel=3

 > nets-parser-macos-x86-64-v1.0 -loglevel=3

 NETS3 Command Line Interface MacOS-x64-v1.0.

 (C) Copyright 2020 NETS3 Ltd

 16/10/15 18:12:45 INF 6908:3 Working directory c:\netscli

 16/10/15 18:12:45 INF 6908:3 Opening grammar library nets-parser-iconv

 16/10/15 18:12:45 INF 6908:3 Opening grammar library nets-parser-library

 16/10/15 18:12:45 ERR 6908:3 Opening default.g file

 16/10/15 18:12:45 ERR 6908:3 Cannot start parser. Parser needs to be initialised.

 The Node and Wasmtime executables run in a very similar way and details are given documentation in the Command Line Interface documentation.

 Version

 This version of NETS v1.0 NETS published 26th January 2021.

 	Initial support for macos-x86-64, wasm-wasi-32, wasm-node-32 and wasm-web-32 architectures

 	Initial feature set including ISO 14977, EBNF, PEG, Grammar XML, pipelines, input/output semantics, abstract syntax trees, logging, breakpoints, single byte characters, wide characters, echo, production terminals, predicates

 	Internal libraries ctype, utility, compress, encrypt, command

 	External libraries encrypt and iconv

 Previous versions are as follows and details of their features are included in the changelog in the project README.md file.

 No previous versions currently.

 Hello World

 The parser needs an to be configured with a grammar, an input and an output.

 >nets-parser -loglevel=3 -grammar="mem:start={wchar.};" -input="mem:Hello World" -output=stdout -grammar_encoding="WCHAR_T" -encoding="WCHAR_T/ASCII"

 NETS3 Command Line Interface v1.0.

 (C) Copyright 2016 NETS3 Ltd

 16/10/15 18:45:58 INF 8040:3 Working directory c:\netscli

 16/10/15 18:45:58 INF 8040:3 Opening grammar library nets-parser-iconv

 16/10/15 18:45:58 INF 8040:3 Opening grammar library nets-parser-library

 16/10/15 18:45:58 INF 8040:3 Parser started

 16/10/15 18:45:58 INF 8040:3 Parser ended

 Hello World16/10/15 18:45:58 INF 8040:3 Closing error file

 Notice that in addition to the -input, -output and -grammar parameters the -grammar_encoding and -encoding parameters
 are required to read the grammar and input from memory.

 A Simple Grammar

 Now create two files default.g and default.in with the following code snippets.

 start={char.};

 The grammar is constructed using a rule ('start'), an iteration (using '{}'), a rule reference ('char'), the echo paramater ('.') and the end of rule symbol (';').
 This grammar repeatedely reads a character from the input and echos it to the output until no more characters can be found.

 Hello World

 Run nets-parser with default.g as the grammar, default.in as the input and default.out as the output.

 >nets-parser -loglevel=3 -grammar=default.g -input=default.in -output=default.out

 NETS3 Command Line Interface v1.0.

 (C) Copyright 2016 NETS3 Ltd

 16/10/15 19:02:13 INF 6820:3 Working directory c:\netscli

 16/10/15 19:02:13 INF 6820:3 Opening grammar library nets-parser-iconv

 16/10/15 19:02:13 INF 6820:3 Opening grammar library nets-parser-library

 16/10/15 19:02:13 INF 6820:3 Opening default.g file

 16/10/15 19:02:13 INF 6820:32 Parse finished before end of input by 2 bytes

 16/10/15 19:02:13 INF 6820:3 Closing file default.g

 16/10/15 19:02:13 INF 6820:3 Parser started

 16/10/15 19:02:13 INF 6820:3 Opening default.in file

 16/10/15 19:02:13 INF 6820:3 Opening default.out file

 16/10/15 19:02:13 INF 6820:3 Parser ended

 16/10/15 19:02:13 INF 6820:3 Closing file default.in

 16/10/15 19:02:13 INF 6820:3 Closing file default.out

 16/10/15 19:02:13 INF 6820:3 Closing error file

 The result will be the following.

 Hello World

 Copyright © Nets3 Limited 2013-2020

 21 Greatfield Drive, Chalrton Kings, Cheltenham, Gloucestershire, GL53 9BT

 NETS3

 	
 Getting Started

 	
 Grammars

 	
 Parsers

 	
 Libraries

 	
 APIs

 	
 Playground

 	Grammar Languages

 	Grammar Names

 	Rules

 	Primary

 	Grammar Attributes

 	Terminals

 	Rule Reference

 	Sequences

 	Group

 	Option

 	Repetition

 	Empty Sequence

 	Choice

 	Pipeline

 	Predicates

 	Entity

 	Entity Reference

 	Comments

 	Mixing NEBNF and GXML

 Grammars

 Grammars define the rules for configuring and running a parser.

 Grammar Languages

 Grammars come in many dialects, from initialisation files to formal grammars like Bacus Naur Form (BNF).
 One of the ideas behind NETS is a unified grammar model for small and large scale processes, which makes configuration easier and improves the reliability of systems.

 The grammar language used in NETS is based on ISO/IEC 14977 (ISO), which incorprates the concepts of Extended Backus Naur Form (EBNF) created by Niklaus Wirth.
 NETS also uses the concepts from Parser Expression Grammars (PEG) defined by Bryan Ford and adds further concepts of particular value to real-world parser generators. This hybrid grammar is called NETS EBNF (NEBNF).
 Finally, NETS has an alternative XML notation for grammars called Grammar XML (GXML).

 Any grammar defined in NEBNF can also be defined in GXML and examples are
 presented in both NEBNF and GXML. NEBNF and GXML can be mixed together in same grammar.

 The of principles of NEBNF are explained in 'A Common Model for Language Grammars'.

 Grammar Names

 Grammars need to be identified uniquely with a name. In NEBNF the file name is the grammar name and can be refered to from the command line.
 In GXML the grammar name is explicitly declared using the id attribute on ethe <grammar> element.
 Grammar names help scope grammar rules so that they can be referenced between grammar corpus or libraries.

 #Command line

 nets-parser -loglevel=3 -grammar=default.g;another.g;grammar2.g -input=default.in -output=default.out

 <!-- GXML -->

 <grammar id="name">

 ...

 </grammar>

 Rules

 Syntax rules are a structural element of grammars. Rules have a
 unique name that can be referenced in other parts of the grammar. In NEBNF a rule
 name is followed by an equals sign and terminates in a semicolon. In GXML a rule is defined using the <rule> element.
 The first rule executed by NETS is the rule with id="start" unless the
 grammar_start command line parameter is used to refer to a different rule.

 (* NEBNF *)

 start = ... ;

 <!-- GXML -->

 <rule id="start">

 ...

 </rule>

 Primary

 Primaries include an optional sequence, repeated sequence, grouped sequence, rule reference, terminal string, empty
 sequence, entity reference and pipeline. Primary is an abstract concept and is useful for describing
 features common across primaries.

 Grammar Attributes

 Attributes are a means of specifying and extending grammar characteristics. Found in XML they may also be used in NEBNF at the end of a primary. id="name" and echo=""
 are examples of attributes.

 (* NEBNF *)

 start = L"Hello World".;

 (* NEBNF with grammar attributes *)

 start = "Hello World" encoding="wchar" echo="";

 <!-- GXML -->

 <rule id="start">

 <terminal encoding="wchar" echo="">Hello World</rule>

 </rule>

 Terminals

 Terminals are literal symbols (or strings of characters) which may appear in the
 rules of a formal grammar and cannot be changed using the rules of the grammar.
 Terminals define both parsed input (consumption) and produced output (production) using either quotes
 or question marks respectively in NEBNF.

 Consumption Terminals

 Consumption terminals are defined with either single or double quotes in NEBNF. GXML uses the <terminal> element to define a consumption terminal.

 (* NEBNF *)

 start = "Hello World";

 <!-- GXML -->

 <rule id="start">

 <terminal>Hello World</rule>

 </rule>

 Production Terminals

 NEBNF uses the ISO/IEC 14977 special sequence notation - question marks - to indicate a production terminal. GXML uses the <special> element to define a production terminal.

 (* NEBNF *)

 start = ?Hello World?;

 <!-- GXML -->

 <rule id="start">

 <special>Hello World</special>

 </rule>

 Encoding

 Terminal encoding can be either multi-byte or wide character. NEBNF
 uses the C style L predicate to strings to indicate wchar encoded terminal. GXML
 uses the encoding attribute with values "char" and "wchar" attribute.

 (* NEBNF *)

 start = ?Hello World?;

 start = L"Hello World";

 <!-- GXML -->

 <rule id="start">

 <special encoding="char">Hello World</special>

 </rule>

 <rule id="start">

 <terminal encoding="wchar">Hello World</terminal>

 </rule>

 Rule Reference

 Rule refenerences are symbols which can be replaced by rules. They are used to structure complex grammars into
 reusable rule sets or grammars. GXML uses the idref attribute to define rule references.

 (* NEBNF *)

 start = new_rule;

 new_rule = "Hello World";

 <!-- GXML -->

 <rule id="start">

 <ruleref idref="new_rule"/>

 </rule>

 <rule id="new_rule">

 <terminal>Hello World</rule>

 </rule>

 Referencing a rule in a specific grammar, requires the rule reference to be qualified by the grammar name.

 (* NEBNF *)

 start = mygrammar.rule_name;

 <!-- GXML -->

 <rule id="start">

 <ruleref grammar="mygrammar" idref="rule_name"/>

 </rule>

 Sequences

 A sequence is a series of one or more expressions evaluated in order. Expressions
 include terminals, rule references, sequences, choices, groups, iterations, options and the empty
 sequence. ISO/IEC 14977 refers to sequences as a single definition.
 Sequences are usually implicit but are concretely implemented in syntax rules,
 grouped sequences, repetitions and options.

 	A syntax rule is a named sequence

 	A grouped sequence is an unnamed sequence

 	An option is a sequence with zero or one occurrences

 	A repetition is a sequence with zero or more occurrences

 	An empty sequence has no primaries

 	 A DOM sequence changes the current SDOM level. This feature
 is specific to NEBNF and GXML

 In NEBNF a comma ',' separates primaries in a sequence.

 Group

 A group is an unnamed sequence. It is defined using curved brackets in NEBNF. GXML defines a group using the <group> element.

 (* NEBNF *)

 start = ("Hello ","World");

 <!-- GXML -->

 <rule id="start">

 <group>

 <terminal>Hello </rule>

 <terminal>World</rule>

 </group>

 </rule>

 Option

 An option is a sequence that can occur zero or one times. It is defined using sqaured brackets in NEBNF. GXML uses the <option> element.

 (* NEBNF *)

 start = ["Hello "],"World";

 <!-- GXML -->

 <rule id="start">

 <option>

 <terminal>Hello </rule>

 </option>

 <terminal>World</rule>

 </rule>

 Repetition

 A repetition is a sequence that can occur zero or more times. In NEBNF and GXML it is referred to as iteration. It is defined using curly braces in NEBNF. In GXML it is defined using the <iteration> element.

 (* NEBNF *)

 start = {char};

 <!-- GXML -->

 <rule id="start">

 <iteration>

 <ruleref idref="char"/>

 </iteration>

 </rule>

 Note: To echo characters from the input to the output add a dot '.' symbol to the end of a primary in NEBNF.
 Or for GXML add the echo="" attribute to a primary.

 (* NEBNF *)

 start = {char.};

 <!-- GXML -->

 <rule id="start">

 <iteration>

 <ruleref idref="char" echo="true"/>

 </iteration>

 </rule>

 For a repetition to occur one or more times either repeat the primary before the repitition in NEBNF or use the minoccurs attribute in GXML.

 (* NEBNF *)

 start = char,{char};

 <!-- GXML -->

 <rule id="start">

 <iteration minorccurs="1">

 <ruleref idref="char"/>

 </iteration>

 </rule>

 For a repetition to occur exactly n times use the * symbol in NEBNF or minoccurs and maxoccurs attributes in GXML.

 (* NEBNF *)

 start = 3 * char;

 <!-- GXML -->

 <rule id="start">

 <iteration minoccurs="3" maxoccurs="3">

 <ruleref idref="char"/>

 </iteration>

 </rule>

 Empty Sequence

 The empty sequence consists of an empty sequence of primaries and always evaluates to true. Use the <empty> element in GXML.

 (* NEBNF *)

 start = ;

 <!-- GXML -->

 <rule id="start">

 <empty/>

 </rule>

 Choice

 A choice is a sequence of one or more items evaluated in order until one is
 found to be true. More than one item in the series may be valid, but only the first valid choice is used.
 A vertical bar '|' is used to separate choice items in NEBNF. GXML uses the <choice> element to define choices.

 (* NEBNF *)

 start = a | b | c;

 <!-- GXML -->

 <rule id="start">

 <choice>

 <ruleref idref="a"/>

 <ruleref idref="b"/>

 <ruleref idref="c"/>

 </choice>

 </rule>

 Pipeline

 A pipeline is a sequence of two or more primaries, with the production from a primary in the chain sent to its
 successor in the pipeline sequence. Pipelines are common operating system
 features and are significant in many grammars. The colon ':' symbol is used
 separate pipeline primaries in NEBNF. In GXML the <pipeline> element is used.

 (* NEBNF *)

 start = asciitowchar : {wchar.} : wchartoascii;

 <!-- GXML -->

 <rule id="start">

 <pipeline>

 <ruleref idref="asciitowchar"/>

 <iteration/>

 <ruleref idref="wchar" echo=""/>

 </iteration>

 <ruleref idref="wchartoascii"/>

 </pipeline>

 </rule>

 Predicates

 Predicates are used to test primaries without consuming input. There are three kinds

 	The not predicate continues evaluation of the sequence when the
 expression evaluates to false; no input is consumed and no output produced; NEBNF uses a preceding
 exclamantion symbol to define a not predicate for a primary; GXML uses the predicate="not" attribute

 	The and predicate continues evaluation of the sequence when the
 expression evaluates to true; no input is consumed and no output produced; NEBNF uses a preceding
 ampersand symbol to define an and predicate for a primary; GXML uses the predicate="and" attribute

 	The again predicate continues evaluation of the
 sequence when the expression evaluates to true; no input is consumed,
 but output is produced. It permits repeated evaluation of the same input; NEBNF uses a preceding
 double ampersand symbol to define the again predicate for a primary; GXML uses the predicate="again" attribute

 	ISO/IEC 14977 includes a form of predicate known as an exception and is supported in NEBNF
 for compatibility with ISO/IEC 19477. The not predicate provides equivalence

 	Predicate
 	Example

 	Not
 	

 (* NEBNF *)

 start = !"Anything ","Hello ","World";

 <!-- GXML -->

 <rule id="start">

 <terminal predicate="not">Anything </terminal>

 <terminal>Hello </terminal>

 <terminal>World</terminal>

 </rule>

 	And
 	

 (* NEBNF *)

 start = &"Hello ","Hello ","World";

 <!-- GXML -->

 <rule id="start">

 <terminal predicate="and">Hello </terminal>

 <terminal>Hello </terminal>

 <terminal>World</terminal>

 </rule>

 	Again
 	

 (* NEBNF *)

 start = &&"Hello ","Hello ","World";

 <!-- GXML -->

 <rule id="start">

 <terminal predicate="again">Hello </terminal>

 <terminal>Hello </terminal>

 <terminal>World</terminal>

 </rule>

 	Exception
 	

 (* NEBNF *)

 start = "Hello " - "Anything ",World";

 <!-- GXML -->

 <rule id="start">

 <terminal predicate="not">Anything </terminal>

 <terminal>Hello </terminal>

 <terminal>World</terminal>

 </rule>

 Entity

 An Entity is a rule with a single terminal as its definition. It is used to describe
 reusable text that can be referenced in either consumption or production terminals.

 (* NEBNF *)

 hello_world = "Hello World";

 <!-- GXML -->

 <entity id="hello_world">

 <terminal>Hello World</terminal>

 </entity>

 Entity Reference

 Entity references are commonly used in XML documents to refer to restricted and common characters
 and strings. Examples include & and ". Languages like C use the back-slash
 in strings to prefix a predefined entity such as newline \n or a character specified in hex \x0A.
 In Unix shells ${name} is used to reference environment variables. The term 'entity reference' is used to
 describe these types of reference.

 NEBNF uses \xhhhh to define a character using a hexadecimal number.
 GXML uses &#dd; to define a character using a decimal number.

 (* NEBNF *)

 start = ?${hello} ${world}\n?;

 hello = "Hello ";

 world = "World";

 <!-- GXML -->

 <rule id="start">

 <special>&hello; &world;</terminal>

 </rule>

 <rule id="hello">

 <terminal>Hello </terminal>

 </rule>

 <rule id="world">

 <terminal>World</terminal>

 </rule>

 Comments

 NEBNF uses the (* *) combination and GXML uses standard XML comment notation <!-- --> to add comments
 to a grammar.

 (* NEBNF *)

 (* This is a comment which may wrap over

 multiple lines*)

 start = ?Hello World?;

 <!--This is a comment which may wrap over
 multiple lines-->

 <rule id="start">

 <special>Hello World</special>

 </rule>

 Mixing NEBNF and GXML

 NETS grammars can be written using a mix of NEBNF and GXML.

 <!-- GXML -->

 <rule id="start">

 (* NEBNF *)

 start = ?Hello World?;

 </rule>

 Copyright © Nets3 Limited 2013-2020

 21 Greatfield Drive, Chalrton Kings, Cheltenham, Gloucestershire, GL53 9BT

 NETS3

 	
 Getting Started

 	
 Grammars

 	
 Parsers

 	
 Libraries

 	
 APIs

 	
 Playground

 	Input and Output

 	File, Memory and Pipe

 	Streamed Document Object Model

 	Elements

 	Levelling the SDOM

 	Attributes

 	Text

 	Dynamic Elements and Attributes

 	Reading the SDOM

 	Debugging the SDOM

 	Actions

 	Logging

 	Breakpoint

 Parsers

 Parsers use grammars to configure how they consume input and produce output.

 Parsers implementat grammars and can be either interpretive or
 compiled. Interpretive parsers such as NETS read
 the grammar and use it to parser some input and generate an output.
 Compiled parsers written in a language such as C or Java and are often
 generated from grammars. They also read some input and generate an output,
 but only for one grammar. GREP is an example of an interpreter for grammars
 and LEX/YACC is an example of a parser generator for grammars.
 Grammars are rarely portable between interpretive and compiled parsers.

 Input and Output

 Parsers act upon some input and generate an output. This may be as simple as
 a one-to-one mapping (an echo) between source and destination or it may
 involve a complex domain specific mapping. It is not unusual for the mapping
 between the source domain model and the target domain model to be a multistage
 process resulting in some final output.
 Parsers and interpreters therefore need to read and write from common
 sources like files, pipes and memory but also complex forms like an Abstract Syntax Trees (AST).
 ASTs have much in common with the World Wide Web Consortium (W3C) Document Object Models (DOM) -
 a popular technology found in web browsers - having nodes with a hierarchy of parents and children.
 NETS uses a W3C DOM like model for input and output of ASTs. NETS uses
 a common model for addressing files, pipes, memory and DOMs.

 The syntax for defining input and output is to use the stream type ('file', 'mem', 'pipe', 'document',
 'element', 'attribute', 'entity', 'entityreference', 'text', 'comment' and 'processinginstruction') followed by a colon (':')
 followed by the stream name (with the exception of 'document', 'text', 'comment' and 'processinginstruction').

 We have already seen examples of input and output configured for memory and files as command line parameters.
 These same parameters can be used in rules as attributes of primaries. The following is therefore equivalent.

 # CLI

 >nets-parser -grammar=default.g -input=default.in -output=default.out

 (* NEBNF *)

 start = "Hello World" echo="" input="default.in" output="default.out";

 <!-- GXML -->

 <rule id="start">

 <terminal echo="" input="default.in" output="default.out">Hello World</terminal>

 </rule>

 File, Memory and Pipe

 File, memory and pipe input and output are specified as follows.

 	Name
 	Description

 	File
 	File input and output can be specified using no prefix, the 'file' prefix or 'pipe' prefix. The first two forms open the file in non-buffered mode.
 The 'pipe' prefix uses buffered input output.

 (* NEBNF *)

 start = "Hello World" echo="" input="default.in" output="default.out";

 start = "Hello World" echo="" input="file:default.in" output="file:default.out";

 start = "Hello World" echo="" input="pipe:default.in" output="pipe:default.out";

 NETS parser will overwrite existing files (either non-buffered or piped) by default. Using the'+' symbol
 at the end of the filename will open the file in append mode. This can be used with both output and error files
 specified on the command line and in a grammar. This feature can be useful for appending to log files. Append is
 ignored on non-file stream types.

 (* NEBNF *)

 start = "Hello World" echo="" input="pipe:default.in" output="pipe:default.out+";

 	Pipe
 	
 Pipe input and output is designed for stdin and stdout streams as well as being used in pipelines and for buffering
 file input and output (as shown above).

 (* NEBNF *)

 start = "Hello World" echo="" input="pipe:stdin" output="pipe:stdout";

 start = "Hello World" echo="" input="stdin" output="stdout";

 Piped input and output can be used where NETS is being used as part of an operating system
 sequence of commands organised as a pipline.

 	Memory
 	Memory input and output is designed for in memory streams.
 'mem' uses an internal two or four byte wide character representation of characters depending on the platform. Grammars therefore need to use
 wide character aware primaries and rules.

 (* NEBNF *)

 start = L"Hello World" echo="" input="mem:Hello World";

 <!-- GXML -->

 <rule id="start">

 <terminal echo="" input="mem:Hello World" encoding="WCHAR">Hello World</terminal>

 </rule>

 Streamed Document Object Model (SDOM)

 Abstract Syntax Trees (ASTs) represent data structures. For example if the data represents contact information the corresponding AST
 may have nodes name, address and telephone number. NETS uses a W3C style DOM to
 represent the AST generated by the parser. The NETS DOM is stored in any supported stream type (ie. file, memory or pipe) and is
 known as a Streamed Document Object Model (SDOM).

 In NETS the relationship between the grammar and the DOM is defined by assigning primaries in the grammar
 to DOM nodes using -input and -output attributes.
 This approach both unifies the input and output model of the parser, but also provides traceability between the
 grammar and the AST/DOM. The declarative approach to linking AST/DOMs to grammars is useful when creating
 complex multi-stage parsers. The declarative approach allows NETS to both read and write SDOMs.

 NETS parser does not follow a strict implementation of the W3C DOM but supports a subset of features required
 for producing ASTs. The following table shows the types of node that may exist in a NETS DOM.

 	Node Type
 	Description

 	Document
 	Documents must always be the root of the DOM tree. If not specified they are automatically
 created before the first child is added.

 Document has children
 Element (1),
 Comment, Processing Instruction

 	Element
 	Elements can be built into a hierarchy using parent-child relationships. Elements have a name and a value.

 Element has children
 Element, Text, Entity Reference,
 Comment, Processing Instruction,
 CDATA Section

 Element has attributes

 	Attribute
 	Attributes can only be added to elements, entities and entity references. Attributes have a name and value.

 Attribute has children Text and Entity Reference

 	Entity
 	Entities are used to define reusable text elements.

 Entity has children Text and Entity Reference

 Entity has attributes

 	Entity Reference
 	Entity references refer to entities and effectively substitute them during processing.

 Entity Reference has no children

 Entity Reference has attributes

 	Text
 	Text defines text elements.

 Text has no children

 	CDATA
 	CDATA defines binary elements.

 CDATA has no children

 	Comment
 	Comments add commentary to a DOM.

 Comment has no children

 	Processing Instruction
 	Processing instructions define script or code to be interpretted as part of DOM processing.

 ProcessingInstruction has no children

 The following sections show examples of using the DOM model for input and output.

 Elements

 Elements can be used to construct complex hierarchies of nodes in the AST. A tree begins with a document node. All text in
 the DOM should be encoded as wide characters. The grammar below shows a pipeine that includes converting from ASCII to WCHAR, processing
 the input and producing a DOM structure, which is then converted into XML (toXML) and finally converted from WCHAR to ASCII.

 Within the rule 'parser' a DOM Group (using the '(^' and '^)' notation) increments the level in the DOM hierarchy at which nodes
 are being added. In this instance the Element 'doc' is added as a child to the document node and the Element
 'name' is added as a child to the 'doc' Element. The resulting output is shown at the end of the table.

 (* NEBNF *)

 start= asciitowchar : parser : toXML : wchartoascii;

 parser = output="document:",

 (^output="element:doc",

 (^{wchar. output="element:name"}^)

 ^) ;

 <!-- GXML -->

 <rule id="start">

 <pipeline>

 <ruleref idref="asciitowchar"/>

 <ruleref idref="parser"/>

 <ruleref idref="toXML"/>

 <ruleref idref="wchartoascii"/>

 </pipeline>

 </rule>

 <rule id="parser">

 <sequence>

 <empty output="document:"/>

 <dom>

 <sequence>

 <empty output="element:doc"/>

 <dom>

 <iteration>

 <ruleref idref="wchar" echo="" output="element:name"/>

 </iteration>

 </dom>

 </sequence>

 </dom>

 </sequence>

 </rule>

 <!-- Output -->

 <doc>

 <name>H</name>

 <name>e</name>

 <name>l</name>

 <name>l</name>

 <name>o</name>

 <name></name>

 <name>W</name>

 <name>o</name>

 <name>r</name>

 <name>l</name>

 <name>d</name>

 </doc>

 Levelling the SDOM

 In the last grammar a new notation was introduced which changes the level of the DOM hierachy. The '(^...^)'
 NEBNF
 and <dom>...</dom> GXML notation makes the last element the parent of the next element in the hierarchy.
 This DOM hierarchy leveling can be nested to create arbitrarily complex DOM trees with many levels.

 Attributes

 Attributes are applied to the previous element in the output DOM. They must be unique for an element.

 (* NEBNF *)

 start = asciitowchar : parser : toXML : wchartoascii;

 parser = output="document:",

 (^

 output="element:doc",

 (^

 {

 output="element:letter",

 wchar. output="attribute:name"

 }

 ^)

 ^) ;

 <!-- GXML -->

 <rule id="start">

 <pipeline>

 <ruleref idref="asciitowchar"/>

 <ruleref idref="parser"/>

 <ruleref idref="toXML"/>

 <ruleref idref="wchartoascii"/>

 </pipeline>

 </rule>

 <rule id="parser">

 <sequence>

 <empty output="document:"/>

 <dom>

 <sequence>

 <empty output="element:doc"/>

 <dom>

 <iteration>

 <sequence>

 <empty output="element:letter"/>

 <ruleref idref="wchar" echo="" output="attribute:name"/>

 </sequence>

 </iteration>

 </dom>

 </sequence>

 </dom>

 </sequence>

 </rule>

 <!-- Output -->

 <doc>

 <letter name="H"/>

 <letter name="e"/>

 <letter name="l"/>

 <letter name="l"/>

 <letter name="o"/>

 <letter name=" "/>

 <letter name="W"/>

 <letter name="o"/>

 <letter name="r"/>

 <letter name="l"/>

 <letter name="d"/>

 </doc>

 Text

 Text is added as children to Elements, Entities and Attributes to help build up compound objects.

 (* NEBNF *)

 start= asciitowchar : parser : toXML : wchartoascii;

 parser = output="document:",

 (^

 output="element:doc",

 (^

 {

 output="element:letters",

 (^

 wchar. output="textnode:",

 wchar. output="textnode:"

 ^)

 }

 ^)

 ^);

 <!-- GXML -->

 <rule id="start">

 <pipeline>

 <ruleref idref="asciitowchar"/>

 <ruleref idref="parser"/>

 <ruleref idref="toXML"/>

 <ruleref idref="wchartoascii"/>

 </pipeline>

 </rule>

 <rule id="parser">

 <sequence>

 <empty output="document:"/>

 <dom>

 <sequence>

 <empty output="element:doc"/>

 <dom>

 <iteration>

 <sequence>

 <empty output="element:letters"/>

 <dom>

 <sequence>

 <ruleref idref="wchar" echo="" output="textnode:"/>

 <ruleref idref="wchar" echo="" output="textnode:"/>

 </sequence>

 </dom>

 </sequence>

 </iteration>

 </dom>

 </sequence>

 </dom>

 </sequence>

 </rule>

 <!-- Output -->

 <doc>

 <letters>He</letters>

 <letters>ll</letters>

 <letters>o </letters>

 <letters>Wo</letters>

 <letters>rl</letters>

 </doc>

 Dynamic Elements and Attributes

 In some cases the name of an Element or Attribute needs to be detrmined dynamically by data in the input. NETS parser has two reserved Element names -
 'Element' and 'Attribute' that are used to dynamically declare Elements and Attributes. The 'name' Attribute added to
 either the output="element:element" or output="element:attribute" creates an Element or Attribute with that name, dyanmically.

 (* NEBNF *)

 start= asciitowchar : parser : toXML : wchartoascii;

 parser = output="document:",

 (^

 output="element:doc",

 (^

 {

 output="element:element",wchar. output="attribute:name",

 (^

 wchar. output="textnode:",

 output="element:attribute",wchar. output="attribute:name",

 (^

 wchar. output="textnode:"

 ^)

 ^)

 }

 ^)

 ^) ;

 <!-- GXML -->

 <rule id="start">

 <pipeline>

 <ruleref idref="asciitowchar"/>

 <ruleref idref="parser"/>

 <ruleref idref="toXML"/>

 <ruleref idref="wchartoascii"/>

 </pipeline>

 </rule>

 <rule id="parser">

 <sequence>

 <empty output="document:"/>

 <dom>

 <sequence>

 <empty output="element:doc"/>

 <dom>

 <iteration>

 <sequence>

 <empty output="element:element"/>

 <ruleref idref="wchar" echo="" output="attribute:name"/>

 <dom>

 <sequence>

 <ruleref idref="wchar" echo="" output="textnode:"/>

 <empty output="element:attribute"/>

 <ruleref idref="wchar" echo="" output="attribute:name"/>

 <dom>

 <ruleref idref="wchar" echo="" output="textnode:"/>

 </dom>

 </sequence>

 </dom>

 </sequence>

 </iteration>

 </dom>

 </sequence>

 </dom>

 </sequence>

 </rule>

 <!-- Output -->

 <doc>

 <H l="l">e</H>

 <o W="o"></o>

 </doc>

 Reading the SDOM

 toXML takes structured output from the 'parser' rule and converts it into XML.
 We call the output from this process the Streamed Document Object Model (SDOM), so called because it is a hierarchical DOM
 stored onto a stream such as a file, memory or pipe. The SDOM structure can be consumed by a parser that knows how to read
 this data structure. toXML takes the SDOM structure and creates an XML representation. NETS helps
 build custom SDOM parsers using the input attribute of a primary.
 Once again the objective is to unify the approach to input and output.

 The following example takes the input document and parses it into words using element:doc and element:word. The 'outputparser'
 rule takes the doc/word SDOM structure and outputs the text.

 (* NEBNF *)

 start= asciitowchar : inputparser : outputparser : wchartoascii;

 inputparser = output="document:",

 (^

 output="element:doc",

 (^

 {

 output="element:word",(^word. output="textnode:" ^),

 output="element:space",(^spaces. output="textnode:"^)

 }

 ^)

 ^) ;

 outputparser = input="document:",

 (^

 input="element:doc",

 (^

 {

 (L?Found Word ? input="element:word", (^word. input="textnode:"^), L?\n?),

 (L?Found Space ? input="element:space", (^spaces. input="textnode:"^), L?\n?)

 }

 ^)

 ^) ;

 word = {walnum};

 spaces = {wspace};

 <!-- GXML -->

 <rule id="start">

 <pipeline>

 <ruleref idref="asciitowchar"/>

 <ruleref idref="inputparser"/>

 <ruleref idref="outputparser"/>

 <ruleref idref="wchartoascii"/>

 </pipeline>

 </rule>

 <rule id="inputparser">

 <sequence>

 <empty output="document:"/>

 <dom>

 <sequence>

 <empty output="element:doc"/>

 <dom>

 <iteration>

 <sequence>

 <empty output="element:word"/>

 <dom>

 <ruleref idref="word" echo="" output="textnode:"/>

 </dom>

 <empty output="element:space"/>

 <dom>

 <ruleref idref="spaces" echo="" output="textnode:"/>

 </dom>

 </sequence>

 </iteration>

 </dom>

 </sequence>

 </dom>

 </sequence>

 </rule>

 <rule id="outputparser">

 <sequence>

 <empty input="document:"/>

 <dom>

 <sequence>

 <empty input="element:doc"/>

 <dom>

 <iteration>

 <sequence>

 <group>

 <sequence>

 <special encoding="wchar" input="element:word">Found Word</special>

 <dom>

 <ruleref idref="word" echo="" input="textnode:"/>

 </dom>

 <special encoding="wchar"></special>

 </sequence>

 </group>

 <group>

 <sequence>

 <special encoding="wchar" input="element:space">Found Space</special>

 <dom>

 <ruleref idref="spaces" echo="" input="textnode:"/>

 </dom>

 <special encoding="wchar"></special>

 </sequence>

 </group>

 </sequence>

 </iteration>

 </dom>

 </sequence>

 </dom>

 </sequence>

 </rule>

 <rule id="word">

 <iteration>

 <ruleref idref="walnum"/>

 </iteration>

 </rule>

 <rule id="spaces">

 <iteration>

 <ruleref idref="wspace"/>

 </iteration>

 </rule>

 Input

 Hello World Hello2 World2

 Output

 Found Word Hello

 Found Space

 Found Word World

 Found Space

 Found Word Hello2

 Found Space

 Found Word World2

 Found Space

 Debugging the SDOM

 The SDOM is a binary stream and is difficult to interpret using standard text editors and debugging aids.
 The toXML rule converts the SDOM into XML as shown in previous examples and is useful for understanding the SDOM stream, however, XML does not show the full SDOM
 structure like text nodes and entity references and the identity and relationships between nodes. The toTextTree rule
 can be used to generate a textual representation of the DOM. The previous example can be modified as follows
 to generate an SDOM.

 The first line of the TextTree output has the word 'HEADER'. Subsequent lines display a node per line prefaces with byte offset values
 for the current node using 'I' for identity, the parent node using 'P', the child node using 'C', the sibling node using 'S' and 'A' for the attribute node.
 Following this is the node type (element, attribute, textnode...), followed by the node name (if present), followed by the node value (if present).

 (* NEBNF *)

 start= asciitowchar : inputparser : toTextTree : wchartoascii;

 ...

 <!-- GXML -->

 <rule id="start">

 <pipeline>

 <ruleref idref="asciitowchar"/>

 <ruleref idref="inputparser"/>

 <ruleref idref="toTextTree"/>

 <ruleref idref="wchartoascii"/>

 </pipeline>

 </rule>

 ...

 Input

 Hello World Hello2 World2

 Output

 HEADER

 (I:6,P:0,C:80,S:0,A:0)document--#document

 (I:80,P:6,C:142,S:0,A:0)element--doc

 (I:142,P:80,C:206,S:282,A:0)element--word

 (I:206,P:142,C:0,S:0,A:0)textnode--#text--Hello

 (I:282,P:80,C:348,S:416,A:0)element--space

 (I:348,P:282,C:0,S:0,A:0)textnode--#text--

 (I:416,P:80,C:480,S:556,A:0)element--word

 (I:480,P:416,C:0,S:0,A:0)textnode--#text--World

 (I:556,P:80,C:622,S:690,A:0)element--space

 (I:622,P:556,C:0,S:0,A:0)textnode--#text--

 (I:690,P:80,C:754,S:832,A:0)element--word

 (I:754,P:690,C:0,S:0,A:0)textnode--#text--Hello2

 (I:832,P:80,C:898,S:966,A:0)element--space

 (I:898,P:832,C:0,S:0,A:0)textnode--#text--

 (I:966,P:80,C:1030,S:1108,A:0)element--word

 (I:1030,P:966,C:0,S:0,A:0)textnode--#text--World2

 (I:1108,P:80,C:1174,S:1242,A:0)element--space

 (I:1174,P:1108,C:0,S:0,A:0)textnode--#text--

 Actions

 A parsing or generating process will need to perform actions, in addition to
 generating the AST, during processing. Formal language grammars do not
 define actions, but many tools provide extensions that allow actions to be
 defined, however, there is usually no declarative way of linking grammars with
 their actions without mixing code fragments with grammar.
 Making a clear separation between the grammar and the action code is
 necessary if grammars are to be reused for parsers built using different
 languages. But having a clear relationship between grammar and the action
 code through declaration is also desirable.

 NETS uses actions as a means of defining when and what is executed as the result of the success or failure
 of a primary. In NETS actions can only be references to rules, but when NETS is used
 with code generation actions may also be scripts and function calls.

 	Name
 	Description

 	onbefore
 	The 'onbefore' action is executed prior to the primary.

 	onafter
 	The 'onafter' action is executed after the primary, if it evaluates successfully.

 	onerror
 	The 'onerror' action is executed after the primary, if it evaluates to false.

 Logging

 NETS logging features include the error stream, loglevel and log attributes.

 	Name
 	Description

 	loglevel
 	The log level can be set through the 'loglevel' command line or on any primary.

 	MESSAGE (0) - the highest log level which is only used by the loginfo Attribute

 	ERROR (1) - error messages including the failure to open files

 	WARNING (2) - warning messages

 	INFO (3) - information messages include file opens

 	DEBUG (4) - debug messages including attribute additions

 #Command Line

 >nets-parser loglevel=1

 (* NEBNF *)

 start = asciitowchar : parser loglevel="1" : toXML : wchartoascii;

 Note that when loglevel=4 and -grammar_xml are set, primaries are generated with unique ids and line number/offset information for each primary.

 	error
 	The 'error' stream can be set either on the command line or on any primary. It is typically set to a file or 'stderr'.
 Changing error on a primary allows logs to be generated for particular parts of a gramamr at a particular loglevel.

 # Command Line

 >nets-parser error=default.log

 (* NEBNF *)

 start = asciitowchar : parser error="parser.log" : toXML : wchartoascii;

 	loginfo
 	The 'loginfo' attribute logs the message in the attribute value to the error stream at loglevel=0.

 (* NEBNF *)

 start = asciitowchar : parser loginfo="We are parsing" : toXML : wchartoascii;

 	logerror
 	The 'logerror' attribute adds the message in the attribute value to the error stream only if an error occurs in the primary.

 (* NEBNF *)

 start = asciitowchar : parser logerror="Parser has failed" : toXML : wchartoascii;

 	jobid
 	The 'jobid' command line parameter adds the job id (instead of the thread id) to each line in the error stream.

 Breakpoint

 Breakpoints pause the process of parsing until the user strikes a key.

 	Name
 	Description

 	breakpoint
 	
 Breakpoints can be set on any primary using the breakpoint attribute.

 (* NEBNF *)

 start = asciitowchar : parser breakpoint="" : toXML : wchartoascii;

 <!-- GXML -->

 <rule id="start">

 <pipeline>

 <ruleref idref="asciitowchar"/>

 <ruleref idref="parser" breakpoint=""/>

 <ruleref idref="toXML"/>

 <ruleref idref="wchartoascii"/>

 </pipeline>

 </rule>

 Copyright © Nets3 Limited 2013-2020

 21 Greatfield Drive, Chalrton Kings, Cheltenham, Gloucestershire, GL53 9BT

 NETS3

 	
 Getting Started

 	
 Grammars

 	
 Parsers

 	
 Libraries

 	
 APIs

 	
 Playground

 	Internal Libraries

 	External Libraries

 	System Runtime Grammars

 	Context Grammar

 	Command Grammar

 	Core Attributes

 	Character Type Library

 	XML Library

 	Utility Library

 	Iconv Library

 	Encoder/Decoder Library

 Libraries

 Libraries are reusable building blocks for building parsers.

 Libraries contain rules, entities and other logic that can be reused across applications. They are built-in, defined by users or are configured dynamically at runtime. Libraries
 provide the opportunity to not only reuse declarative
 grammars but also introduce algorithmic processes and procedures into
 applications that are opaque in their operation.
 There are five types of grammar library:

 	User defined grammar libraries as described in Grammars

 	Internal grammar libararies built into Nets

 	External grammar libraries supplied as a DLL or shared library

 	System context grammars include runtime runtime parameters and environment variables

 	The system command grammar defines common operating system commands

 Internal Libraries

 Internal grammar libraries are built into NETS and cannot be changed. They provide features
 like character classification and common encoding/decoding algorithms.

 	Library Name
 	Description

 	Character Type Library
 	The nets-ctype grammar library defines common character classification rules and
 entity references. Variants are provided for multi byte and wide
 character strings.

 	Utility Library
 	The nets-utility grammar library defines rules for echoing input to output, progress monitoring,
 sending output to the null stream, line counting and hexdumps.

 	Encoding Library
 	The nets-encoding grammar library defines common encoding and decoding rules.
 These include asciitowchar, wchartoascii, base64encode and base64decode to name a few.

 	XML Library
 	The nets-XML grammar library defines common XML entity references for
 XML derived grammars. Also included in this package is XML encoding.

 External Libraries

 Executable external libraries provide a way of extending Nets. Included in NETS is
 the 'iconv' library. Users can develop their own external grammar libraries (see the Code section
 of this guide for more details). NETS searches in the -grammar_libpath path for DLLs
 and shared libraries that conform to the NETS grammar library interface specification or the current directory if no -grammar_libpath
 is specified. If they are found they are automatically
 loaded and their rules and entities made available to the NETS runtime.

 	Library Name
 	Description

 	Iconv Library
 	The nets-iconv grammar library supports conversion of
 strings using any combination of source and target character using the
 POSIX standard 'iconv' function. The Iconv Library is an external grammar library.

 	Encoder-Decoder Library
 	An extensible package of utilities.

 System Runtime Grammars

 In addition to the built-in and external grammars, other grammars are dynamic and defined at runtime.

 	Library Name
 	Description

 	Context Grammar
 	The context grammar defines entities derived from command line and environment parameters.
 It includes entities like 'grammar', 'input' and 'output'.

 	Command Grammar
 	The command grammar defines operating system commands that can be referenced with
 a grammar.

 To view the full list of installed grammars and their rules and entities run NETS with
 the -printlibrary and -grammar_xml=grammar-xml to generate an XML file containing all the user defined
 grammars and rules in the current execution including the context grammar.

 >nets-parser -loglevel=3 -grammar=default.g -grammar_xml=default.xml -printlibrary -input=default.in -output=default.out

 Context Grammars

 The context grammar is generated at runtime from the NETS command line parameters and system environment variables.
 The -loadenv command line parameter forces all environment variables to be loaded into the context grammar.
 A typical example of the context grammar is shown below. The -grammar_xml command line parameter
 can be used to report on the context for any run of the parser. Treating command parameters and environment variables in this way
 enables them be referenced easily within the grammar through Entity References. The locale (shown below) is defined when Nets
 runs and is taken from the current system locale.

 # Command Line

 >nets-parser -loglevel=3 -grammar=default.g -input=default.in -output=default.out -grammar=default.g -grammar_xml=grammar.xml
 -error=stderr

 <!-- grammar.xml -->

 <grammar id="context">

 <entity id="ini">default.ini</rule>

 <entity id="error">pipe:stderr</rule>

 <entity id="grammar_start">start</rule>

 <entity id="loglevel">3</rule>

 <entity id="input">default.in</rule>

 <entity id="output">default.out</rule>

 <entity id="grammar">default.g</rule>

 <entity id="grammar_xml">grammar.xml</rule>

 <entity id="locale">English_United States.1252</rule>

 </grammar>

 Command Grammars

 The command grammar is loaded at runtime from the NETS 'command.g' grammar. It includes the 'command' rule which is part of the
 built-in library. NETS searches in the -grammar_libpath path for command.g grammar file.
 In some installations (such as cloud environments) -grammar_libpath is not available, and so cannot be overridden,
 so only a fixed set of commands are made available to users.

 <!-- GXML -->

 <grammar id="nets_command">

 <rule id="cp">

 <ruleref idref="command" name="copy"/>

 </rule>

 <rule id="rm">

 <ruleref idref="command" name="del"/>

 </rule>

 <rule id="command"/>

 </grammar>

 	Name
 	Description

 	rule command
 	input none
 output none
 attributes name, parameters

 Executes the command identified by name in 'command.g' with parameters identified by the 'parameter' Attribute.

 (* NEBNF *)

 start = command name="cp" parameter="${input} default.out"

 Core Attributes

 Core attributes are the set of attributes used by all rules and include id, input, output, encoding, echo, predicate, onbefore, onafter, onerror,
 loginfo and logmessage. They are denoted by 'coreattrs' in the library definitions that follow.

 Character Type Library

 The nets-ctype grammar library defines common character classifications and
 entity references. This library also supports custom character ranges using a
 minimum to a maximum value. Variants are provided for multi byte and wide
 character strings.

 	Name
 	Description

 	rule alnum
 	input single multi-byte character in the current locale
 output none

 attributes coreattrs

 A union of the alpha and digit character classifications

 	rule alpha
 	input single multi-byte character in the current locale

 output none

 attributes coreattrs

 Any alphabetic character in the current locale

 	rule ascii
 	input single multi-byte character in the current locale

 output none

 attributes coreattrs

 Any ASCII 7 bit character in the current locale

 	rule char
 	input single multi-byte character in the current locale

 output none

 attributes coreattrs

 Any character in the current locale

 	rule cntrl
 	input single multi-byte character in the current locale

 output none

 attributes coreattrs

 Any control character in the current locale

 	rule digit
 	input single multi-byte character in the current locale

 output none

 attributes coreattrs

 Any decimal digit in the current locale

 	rule lower
 	input single multi-byte character in the current locale

 output none

 attributes coreattrs

 Any lower case letter in the current locale

 	rule print
 	input single multi-byte character in the current locale

 output none

 attributes coreattrs

 Any printable character in the current locale

 	rule punct
 	input single multi-byte character in the current locale

 output none

 attributes coreattrs

 Any punctuation character in the current locale

 	rule space
 	input single multi-byte character in the current locale
 output none

 attributes coreattrs

 Any space character in the current locale

 	rule upper
 	input single multi-byte character in the current locale

 output none

 attributes coreattrs

 Any upper case character in the current locale

 	rule xdigit
 	input single multi-byte character in the current locale

 output none

 attributes coreattrs

 Any hexadecimal digit in the current locale

 	rule range
 	input single multi-byte character in the current locale

 output none

 attributes coreattrs, min, max

 Any character with the min and max range defined in the current locale

 	rule walnum
 	input single wide character in the current locale

 output none

 attributes coreattrs

 A union of the walpha and wdigit character classifications

 	rule walpha
 	input single wide character in the current locale

 output none

 attributes coreattrs

 Any alphabetic wide character in the current locale

 	rule wascii
 	input single wide character in the current locale

 output none

 attributes coreattrs

 Any ASCII 7 bit wide character in the current locale

 	rule wchar
 	input single wide character in the current locale

 output none

 attributes coreattrs

 Any multibyte wide character in the current locale

 	rule wcntrl
 	input single wide character in the current locale

 output none

 attributes coreattrs

 Any control wide character in the current locale

 	rule wdigit
 	input single wide character in the current locale

 output none

 attributes coreattrs

 Any decimal wide digit in the current locale

 	rule wlower
 	input single wide character in the current locale

 output none

 attributes coreattrs

 Any lower case wide character in the current locale

 	rule wprint
 	input single wide character in the current locale

 output none

 attributes coreattrs

 Any printable wide character in the current locale

 	rule wpunct
 	input single wide character in the current locale

 output none

 attributes coreattrs

 Any punctuation wide character in the current locale

 	rule wspace
 	input single wide character in the current locale

 output none

 attributes coreattrs

 Any space wide character in the current locale

 	rule wupper
 	input single wide character in the current locale

 output none

 attributes coreattrs

 Any upper case wide character in the current locale

 	rule wxdigit
 	input single wide character in the current locale

 output none

 attributes coreattrs

 Any hexadecimal wide digit in the current locale

 	rule range
 	input single wide character in the current locale

 output none

 attributes coreattrs, min, max

 Any wide character with the min and max range defined in the current locale

 	entity \a
 	input single multi-byte or wide character in the current locale

 output single multi-byte or wide character in the current locale

 attributes coreattrs

 x07 beep

 	entity \b
 	input single multi-byte or wide character in the current locale

 output single multi-byte or wide character in the current locale

 attributes coreattrs

 x08 backspace

 	entity \t
 	input single multi-byte or wide character in the current locale

 output single multi-byte or wide character in the current locale

 attributes coreattrs

 x09 horizontal tab

 	entity \n
 	input single multi-byte or wide character in the current locale

 output single multi-byte or wide character in the current locale

 attributes coreattrs

 x0A newline

 	entity \v
 	input single multi-byte or wide character in the current locale

 output single multi-byte or wide character in the current locale

 attributes coreattrs

 x0B vertical tab

 	entity \f
 	input single multi-byte or wide character in the current locale

 output single multi-byte or wide character in the current locale

 attributes coreattrs

 x0C form feed

 	entity \r
 	input single multi-byte or wide character in the current locale

 output single multi-byte or wide character in the current locale

 attributes coreattrs

 x0D carriage return

 	entity \"
 	input single multi-byte or wide character in the current locale

 output single multi-byte or wide character in the current locale

 attributes coreattrs

 x22 double quote

 	entity \'
 	input single multi-byte or wide character in the current locale

 output single multi-byte or wide character in the current locale

 attributes coreattrs

 x27 single quote

 	entity \?
 	input single multi-byte or wide character in the current locale

 output single multi-byte or wide character in the current locale

 attributes coreattrs

 x3F question mark

 	entity \\
 	input single multi-byte or wide character in the current locale

 output single multi-byte or wide character in the current locale

 attributes coreattrs

 x5C backslash

 	rule \xhh
 	input single multi-byte or wide character in the current locale

 output single multi-byte or wide character in the current locale

 attributes coreattrs

 Any character code hh defined in hexadecimal

 XML Library

 The nets-xml grammar library defines common entity references for grammars
 using XML grammar notation.

 	Name
 	Description

 	entity <
 	input single multi-byte or wide character in the current locale

 output single multi-byte or wide character in the current locale

 attributes coreattrs

 Less than

 	entity >
 	input single multi-byte or wide character in the current locale

 output single multi-byte or wide character in the current locale

 attributes coreattrs

 Greater than

 	entity &
 	input single multi-byte or wide character in the current locale

 output single multi-byte or wide character in the current locale

 attributes coreattrs

 Ampersand

 	entity '
 	input single multi-byte or wide character in the current locale

 output single multi-byte or wide character in the current locale

 attributes coreattrs

 Single quote

 	entity "
 	input single multi-byte or wide character in the current locale

 output single multi-byte or wide character in the current locale

 attributes coreattrs

 Double quote

 	entity &#nnn;
 	input single multi-byte or wide character in the current locale

 output single multi-byte or wide character in the current locale

 attributes coreattrs

 Any character code nnn defined in decimal

 	rule toXML
 	input streamed DOM (SDOM)

 output wide character XML

 attributes coreattrs

 Converts a streamed DOM (SDOM) to wide character XML.

 	rule toTextTree
 	input streamed DOM (SDOM)

 output wide character XML

 attributes coreattrs

 Converts a streamed DOM (SDOM) to a text tree showing all DOM details.

 Utility Library

 The nets-utility internal library contains utility rules.

 	Name
 	Description

 	rule echo
 	input sequence of bytes

 output sequence of bytes

 attributes coreattrs, echo_file, max

 'echo' copies bytes from the input stream to the output stream without modification.
 The echo_file attribute defines a stream which will contain a copy of the input. This is useful
 when deubbing pipes between processes. Max sets the maximum number of bytes to be copied.

 (* NEBNF *)

 start = echo echo_file="tempfile.tmp" ;

 	rule pv
 	input sequence of bytes

 output sequence of bytes

 attributes coreattrs, sample_time

 'pv' is modeled on the Unix/Linux pv command which monitors progress of data through a pipe. pv echos
 bytes from input to output and generates progress information in the error stream. If the input stream
 is a file, pv reports a percentage complete in the error stream. If the input stream is a pipe, pv reports
 bytes processed in the error stream. pv reports progress every n seconds determined by the sample_time Attribute.
 The following example reports progress every ten seconds.

 (* NEBNF *)

 >start = pv sample_time="10" ;

 	rule null
 	input sequence of bytes

 output sequence of bytes to null

 attributes coreattrs

 'null' takes a sequence of bytes from the input and output them to the null device.

 (* NEBNF *)

 start = null;

 	rule newline, nl
 	input none

 output none

 attributes none

 Increments the input stream's newline count and newline offset. Used in grammars to keep track
 of the line number and byte count for input lines. 'newline' and 'nl' are synonyms.

 	rule newlineout, nlo
 	input none

 output none

 attributes none

 Increments the output stream's newline count and newline offset. Used in grammars to keep track
 of the line number and byte count for output lines. 'newlineout' and 'nlo' are synonyms.

 	rule hexdump
 	input sequence of bytes

 output ASCII hexdump of bytes

 attributes none

 'hexdump' takes a sequence of bytes from the input and output and creates a hexdump style output.

 (* NEBNF *)

 start = hexdump;

 Output

 00000000 | 48 65 6C 6C 6F 20 57 6F 72 6C 64 | Hello World

 Iconv Library

 The nets-iconv grammar external library provides access to the commonly used 'iconv' character encoding/decoding
 utility.

 	Name
 	Description

 	rule iconv
 	input sequence of characters

 output sequence of characters

 attributes coreattrs, input_encoding, output_encoding

 Iconv converts a sequence of characters in the input stream to a sequence of character in the output stream.
 The process stops either when the sequence of source characters is exhausted or an error in the conversion occurs.
 The Attributes input_encoding and output_encoding refer to any valid combination of input and output encoding supported
 by the 'iconv' application installed on the system. The following example shows iconv configured to
 convert ASCII input to WCHAR_T output.

 (* NEBNF *)

 start = iconv input_encoding="ASCII" output_encoding="WCHAR_T";

 Enocoder (Decoder) Library

 The nets-encoder built-in grammar library provides access to the commonly used encoding/decoding
 utilities.

 	Name
 	Description

 	rule asciitowchar
 	input sequence of ASCII characters

 output sequence of wide characters

 attributes coreattrs

 'asciitowchar' converts a sequence of ASCII characters in the input stream to a sequence of wide character in the output stream.
 The process stops either when the sequence of source characters is exhausted. No checking is carried out on the validity of the ASCII character.

 (* NEBNF *)

 start = asciitowchar;

 	rule wchartoascii
 	input sequence of wide characters

 output sequence of ASCII characters

 attributes coreattrs

 'wchartoascii' converts a sequence of wide characters in the input stream to a sequence of ASCII character in the output stream.
 The process stops either when the sequence of source characters is exhausted. No checking is carried out on the suitability of the
 wide character and its validity of the ASCII character.

 (* NEBNF *)

 start = wchartoascii;

 	rule base64encode
 	input sequence of bytes

 output sequence of base64 encoded bytes

 attributes coreattrs

 'base64encode' converts a sequence of bytes in the input stream to a sequence of base64 encoded bytes in the output stream.
 The process stops when the sequence of source characters is exhausted.

 (* NEBNF *)

 start = base64encode;

 	rule base64decode
 	input sequence of base64 encoded bytes

 output sequence of bytes

 attributes coreattrs

 'base64decode' converts a sequence of base64 encoded bytes in the input stream to a sequence of bytes in the output stream.
 The process stops either when the sequence of source characters is exhausted or an invalid base64 sequence is encountered.

 (* NEBNF *)

 start = base64decode;

 	rule runlengthencode
 	input sequence of bytes

 output sequence of run length encoded bytes

 attributes coreattrs

 'runlengthencode' converts a sequence of bytes in the input stream to a sequence run length encoded bytes in the output stream.
 The process stops when the sequence of source characters is exhausted.

 (* NEBNF *)

 start = runlengthencode;

 	rule runlengthdecode
 	input sequence of run length encoded bytes

 output sequence of bytes

 attributes coreattrs

 'runlengthdecode' converts a run length encoded sequence of bytes in the input stream to bytes in the output stream.
 The process stops either when the sequence of source characters is exhausted or an error in the encoding scheme is found.

 (* NEBNF *)

 start = runlengthdecode;

 	rule hextochar
 	input sequence of two hexadecimal single byte characters

 output sequence of multi-byte characters

 attributes coreattrs

 'hextochar' converts a sequence of hex encoded characters (2 input bytes at a time) in the input stream to a multi-byte character in the output stream.
 The process stops either when the sequence of source characters is exhausted or when an invalid input sequence is encountered.

 (* NEBNF *)

 start = hextochar;

 	rule chartohex
 	input sequence of ASCII characters

 output sequence of wide characters

 attributes coreattrs

 'chartohex' converts a sequence of mutli-byte characters in the input stream to a sequence of hexadcimal encoded characters in the output stream.
 The process stops when the sequence of source characters is exhausted.

 (* NEBNF *)

 start = chartohex;

 	rule hextowchar
 	input sequence of four hexadecimal single byte characters

 output sequence of wide characters

 attributes coreattrs

 'hextowchar' converts a sequence of hex encoded characters (4 input bytes at a time) in the input stream to a sequence of wide characters in the output stream.
 The process stops either when the sequence of source characters is exhausted or when an invlaid input sequence is encountered.

 (* NEBNF *)

 start = hextowchar;

 Copyright © Nets3 Limited 2013-2020

 21 Greatfield Drive, Chalrton Kings, Cheltenham, Gloucestershire, GL53 9BT

 NETS3

 	
 Getting Started

 	
 Grammars

 	
 Parsers

 	
 Libraries

 	
 APIs

 	
 Playground

 	Command Line Interface

 	RESTful Interface

 	JavaScript Interface

 Application Programming Interface

 Command line, RESTful and JavaScript APIs that integrate NETS into systems.

 NETS has two kinds of API - application APIs and library APIs. Application APIs help to run NETS on the command line, as a web service or from JavaScript.
 Library APIs allow compiled grammars to be built using a set of C library functions. This section deals with application APIs.

 Command Line Interface

 The NETS Command Line Interface (CLI) allows the parser to be executed from an operating system terminal. It can be executed independently
 or as part of a script or batch process. The nets-parser command is followed by a number of command line parameters as follows.
 These parameters are by convention used in the RESTful API and the JavaScript API.

 The command line is called either as a native executable (MacOS/Linux/Windows, NodeJS WASM executable or a Wasmtime WASI executable.

 	Name
 	Command

 	Native Executable
 	
 NETS is started from the command line by invoking the nets-parser executable.

 > nets-parser-${platform}-${architecture}-v${version}[d] [arguments]

 	Platform may be either win, macos, linux, wasm-wasi, wasm-node or wasm-web

 	Architecture may be either x86-64 or 32

 	Version is expressed as major dot minor and an optional build number ie. v1.0.0001

 	Debug executables are indicated with a d suffix ie. v1.0.0001d

 For example nets-parser-macos-x86-64-v1.0d is the executable file name on MacOS for the x86 64 bit architrecture, in debug mode. nets-parser-wasm-wasi-32-v1.0 is the executable file name for Wasmtime in production mode.

 	NodeJS Executable
 	
 NETS requires node to run the wasm-node executable. A helper JavaScript program nets-parser is used for node. (Update the paths in nets-parser.js when using the wasm-node-32 build).

 > node nets-parser.js -- [arguments]

 NETS Command line arguments are added after the double dash --.

 	Wasmtime Executable
 	 NETS requires wasmtime to run the wasm-wasi executable. NETS requires wasmtime permission to directories for working files, temporary files and the wasm executable. NETS Command line arguments are added after the double dash --.

 > wasmttime nets-parser-wasi.wasm --dir=. --dir=/tmp --dir=${path to nets-parser-debug.wasm} -- [arguments]

 Command line arguments are specified using either the - or / character followed
 by the name of the parameter and followed optionally by an equal sign and the value of the paramater.

 	Name
 	Description

 	input
 	Defines the input file for the parser. Defaults to default.in.

 	output
 	Defines the output file for the parser. Defaults to default.out.

 	error
 	Defines the log file for the parser. Defaults to default.log.

 	loglevel
 	Sets the initial loglevel for the parser.

 	grammar
 	Defines the grammars for the parser. Defaults to default.g. May include multiple
 files separated by either '#' or ';'.

 	grammar_xml
 	Defines the grammar XML output file for the parser. Defaults to default.g.xml.

 	nologo
 	Ommits the copyright and version information from being displayed.

 	encoding
 	The input and output stream encoding in the form encoding="SOURCE/TARGET". The default encoding is "ASCII/ASCII".

 	grammar_encoding
 	The grammar encoding in the form encoding="SOURCE/TARGET". The default grammar encoding is "ASCII/ASCII".

 	loadenv
 	Load the system environment variables as context grammar entities.

 	grammar_libpath
 	Load path for compiled grammar libraries and the 'command.g' grammar. (Not used in cloud environments for security reasons).

 	init
 	Initialise the parser only and do not start. Can be used to check for configuration errors.

 	help
 	Displays help information about command line parameters.

 	jobid
 	The 'jobid' command line parameter adds jobid (instead of the thread id) to each line in the error stream.

 	xxxxxx
 	Any unkown parameter is interpretted as a context grammar entity.

 RESTful Interface

 The NETS RESTful Interface allows the parser to be executed over an HTTP(S) protocol. The endpoint is http://europe-west2-nets3-webapp.cloudfunctions.net/process and responds to a POST with multi-part form data containing the input and the grammar.
 A form which uses the endpoint is available at http://www.nets3.com/1.0/cloudplayground.xhtml.

 An example using the cURL utility is shown below.

 > curl --location --request POST \

 'http://europe-west2-nets3-webapp.cloudfunctions.net/process' \

 --form 'output="default.out"' \

 --form 'grammar=@"default.g"' \

 --form 'input=@"default.in"' \

 --form 'loglevel="4"' \

 --form 'error="default.log"'

 The curl command returns the output to the terminal. Any valid commandline argument can be used as part of the POST. In addition the result_file argument can be used to return any file generated during processing. For example result_file=default.log returns the log file.
 The /process POST endpoint is synchronous with results returned as soon as processing is finished.

 /process POST returns the following HTTP message response codes.

 	Code
 	Description

 	200
 	Successful completion of the operation.

 JavaScript Interface

 The NETS JavaScript Interface allows the parser to be executed from JavaScript code either using Node or a web browser. A Node example is shown below
 which requires the installation of the nets-parser npm module.

 const Nets = require('nets-parser.js');

 var args = {

 input:'default_ouch.in',

 output:'default.out',

 grammar:'default.g',

 error:'stderr',

 loglevel:'3'

 };

 Nets().then(function(app) {

 var parser=0;

 parser=app.init(parser,args);

 console.log(app.getContext(parser,'input'));

 app.setContext(parser,'input','default.in')

 console.log(app.getContext(parser,'input'));

 app.start(parser);

 process.exit();

 });

 An example Node project using NETS is available on Runkit.

 Copyright © Nets3 Limited 2013-2020

 21 Greatfield Drive, Chalrton Kings, Cheltenham, Gloucestershire, GL53 9BT

nets3-logo-large.png
netg

front-cover.xhtml

 [image:]

 Nets Parser

 An introduction to Nets3 grammars and parsers

 Author: Tim Nelms

 Published: 2013

front-cover.jpeg
netg

Nets Parser

An introduction to Nets3
grammars and parsers

Author: Tim Nelms

Published: 2013

