
White Paper

A Common Model for
Language Grammars

First published 16th June 2013
and last updated September
2016

Abstract
In language theory grammars are used to define a set of production rules for

strings in a formal language. In computer science grammars are applied to

the need to recognize whether a given sequence of characters belongs to the

language or is grammatically correct. In other words one is generally used for

output and the other for input respectively.

The formal theory of grammars is well established (Chomsky, 1956) and

recent contributions to theory (Ford, 2004) concern parser expression

grammars. In computer science grammars have been used in a wide range

of applications including as a notation for the definition of computer

languages beginning with Algol (Backus, 1957).

Since Backus Naur Form popular grammar notations have been developed

by Wirth (Wirth, 1977) Extended Backus Naur Form (EBNF), “BS6154 – A

Standard Syntactic Meta-language” (BSI, 1981), ISO 14977 (ISO, 1997) and

regular expressions (Kleene, 1956) (Thomson, 1968).

This paper examines three aspects of language grammars relevant to

parsers. The first section reviews common grammar notations. The second

section introduces a common model for their features expressed using EBNF

and XML notations. The final section examines grammar extensions that are

practical considerations for parsers and generators.

Essentials

• In language theory grammars

define the rules for parsing and

generating text

• Grammar notations vary, but have

common concepts and principles

• This paper compares the core

concepts of the most popular

grammar notations

• Finally, this paper extends these

core concepts with features useful

to real-world parser generators

Page 2

A Comparison of Language Grammars
In order to compare grammars we first need to understand their features

expressed through notation. Features defined in this section include

grammars themselves, rules, terminal strings (for production and

consumption), non-terminals (rule references), sequences, groups, options,

repetitions, choices, pipelines, predicates, empty sequences and entities. We

compare the notations and terminology of (Chomsky, 1956), (Ford, 2004),

(Backus, 1957), (Wirth, 1977), (ANSI, 1989) and (Thomson, 1968).

Grammar

A grammar defines a collection of rules, which form the definition of a

language. A grammar is incomplete when it contains a rule reference that is

not defined by syntax rules in the grammar.

Grammars are identified by name, however, none of the notations outlined in

this paper provide a way of defining a grammar’s identity. The absence of an

identifier limits the ability to cross reference and reuse rules in different

grammars.

Example Notation Source

None given (Chomsky, 1956)

None given (Ford, 2004)

None given (Backus, 1957)

None given (Wirth, 1977)

None given (ANSI, 1989)

None given (ISO, 1997)

None given (Thomson, 1968)

Rules

Chomsky coined the term production rules because in his view of the world

text was produced from the grammars. In computer science rules are usually

referred to as syntax rules and serve to recognize or parse text. Rules have a

unique name that can be referenced in other parts of the grammar. Some

notations permit spaces in rule names and some have an explicit terminator.

Rules are followed by a defining expression.

Example Notation Source

𝑛𝑎𝑚𝑒 → (Chomsky, 1956) denotes production

𝑛𝑎𝑚𝑒 ← (Ford, 2004) denotes recognition or parsing, no
terminator

<name>::= (Backus, 1957) – no terminator

name= . (Wirth, 1977) – dot terminator

name: (ANSI, 1989) – no terminator

name= ; (ISO, 1997) – names may have spaces; semicolon
or dot are permitted alternative terminators

None given (Thomson, 1968)

Primary

A syntactic primary, (ISO, 1997), includes an optional sequence, repeated

sequence, grouped sequence, rule reference, terminal string or empty

sequence. A primary is an abstract concept and is useful for describing

features common across syntactic primaries. Pipelines are also a primary.

Page 3

Terminal

Terminals are literal symbols (or strings of characters) which may appear in

the production or parsing rules of a formal grammar and cannot be changed

using the rules of the grammar. Often surrounded by quotes, terminals can

define both parsed input (consumption) and produced output (production),

however, the following notations cannot show which type of terminal is being

defined.

Consumption Terminal

Example Notation Source

None given (Chomsky, 1956)

name <- t (Ford, 2004)

<name>::=t (Backus, 1957)

name=“t”. (Wirth, 1977)

name: t (ANSI, 1989) – in bold

name=‘t’; (ISO, 1997) – either single or double quotes

t (Thomson, 1968)– regular expressions include
characters, hexadecimal representations of
characters (character ranges and predefined
ranges more properly are pseudo non-terminals)

Production Terminal

Example Notation Source

𝑛𝑎𝑚𝑒 → 𝑡 (Chomsky, 1956) where ‘t’ is not defined by a
rule

None given (Ford, 2004)

None given (Backus, 1957)

None given (Wirth, 1977)

None given (ANSI, 1989)

None given (ISO, 1997)

None given (Thomson, 1968)

Non-Terminal

Non-terminal symbols are those symbols which can be replaced by rules.

They are rule references. In some notations non-terminals may refer to

predefined rules ie. specific characters or character ranges.

Example Notation Source

𝑛𝑎𝑚𝑒 → 𝑎 (Chomsky, 1956) where a is defined by a rule

name <- name2 or [A-Z] or . (Ford, 2004) – character classes; dot means any
character

<name>::=<name2> (Backus, 1957)

name=name2. (Wirth, 1977)

name: name2 (ANSI, 1989) – in italics

name=name2, first-quote-
symbol;

(ISO, 1997) – a non-terminal ending “-symbol” is
pre-defined by the standard

[:upper:] or \u or [A-Z] or . (Thomson, 1968)– regular expressions do not
have non-terminals, however, some predefined
rules and pseudo rules exist. Dot means any
character (outside of square brackets).

Page 4

Sequences

A sequence is a series of one or more expressions evaluated in order as if a

boolean AND was between the items. Expressions include terminals, non-

terminals, sequences, choices, groups, iterations, options and the empty

sequence. BS-6154 and ISO-14977 refer to sequences as a single definition.

Sequences are usually implicit and are concretely implemented in syntax

rules, grouped sequences, repetitions and options.

• A syntax rule is a named sequence

• A grouped sequence is an unnamed sequence

• An option is sequence with zero or one occurrences

• A repetition is a sequence with zero or more occurrences

• An empty sequence has no terminals

Example Notation Source

𝑛𝑎𝑚𝑒 → 𝑎𝑏𝑐 (Chomsky, 1956)

name <- a “b” c (Ford, 2004) – space between items

<name>::=<a> b <c> (Backus, 1957) – space between items

name=a “b” c. (Wirth, 1977) – space between items

name: a b c (ANSI, 1989) – space between items

name=a, “b”, c; (ISO, 1997) – comma between items

abc (Thomson, 1968)– list of items without
separators

Group

A group is an unnamed sequence.

Example Notation Source

None given (Chomsky, 1956) – optional b

None given (Ford, 2004) - question mark

None given (Backus, 1957)

None given (Wirth, 1977)

None given (ANSI, 1989)

name=a, (“b”, c); (ISO, 1997)

None given (Thomson, 1968)

Option

An option is a sequence that can occur zero or one times.

Example Notation Source

𝑛𝑎𝑚𝑒 → 𝑎 𝑏 𝑐

𝑛𝑎𝑚𝑒 → 𝑎 𝑐

(Chomsky, 1956) – optional b

name <- a “b”? c (Ford, 2004) - question mark

<name>::= <a> “b” <c> | <a>

<c>
(Backus, 1957)

name=a [“b”] c. (Wirth, 1977)

name: a [b] c (ANSI, 1989)

name=a, [“b”], c; (ISO, 1997) – “(/” and “/)” may be used as
alternative repeat start and end symbols

ab?c (Thomson, 1968) – question mark

Page 5

Repetition

A repetition is a sequence that can occur zero or more times. It is also

sometimes referred to as iteration.

Example Notation Source

𝑅 → 𝜀

𝑅 → 𝑎 𝑏 𝑐 𝑅

(Chomsky, 1956) – epsilon indicates the
empty string

rule <- a “b”* c (Ford, 2004) – star symbol

<rule>::= | <a> “b” <c> <rule> (Backus, 1957)

rule=a {“b”} c. (Wirth, 1977)

rule: a {b} c (ANSI, 1989) –

rule=a, {“b”}, c; (ISO, 1997) - “(:” and “:)” may be used as
alternative repeat start and end symbols

ab*c (Thomson, 1968) – star symbol

A repetition that occurs 1 or more times can be expressed using the following

notations.

Example Notation Source

𝑅 → 𝑎 𝑏 𝑐 𝑅
𝑅 → 𝜀

(Chomsky, 1956) – epsilon indicates the

empty string

rule <- a “b” “b”* c (Ford, 2004) – star symbol

<rule>::= <a> “b” <c> <rule> | (Backus, 1957)

rule=a “b” {“b”} c. (Wirth, 1977)

rule: a b {b} c (ANSI, 1989)

rule=a, ”b”, {“b”}, c; (ISO, 1997) – “(:” and “:)” may be used as

alternative repeat start and end symbols

abb*c (Thomson, 1968) – star symbol

A repetition that occurs n times can be expressed using the following

notations.

Example Notation Source

𝑅 → 𝑎 𝑎 𝑎 𝑎 (Chomsky, 1956)

rule <- a a a a (Ford, 2004)

<rule>::= <a> <a> <a> <a> (Backus, 1957)

rule=a a a a. (Wirth, 1977)

rule: a a a a (ANSI, 1989)

rule=4*a; (ISO, 1997) – “(:” and “:)” may be used as
alternative repeat start and end symbols

Choice

A choice is a sequence of one or more items evaluated in order until one is

found to be valid as if a boolean XOR was between the items. More than one

item in the series may be valid, but only the first valid choice is used. They

are sometimes known as alternates.

Example Notation Source

𝑅 → 𝑎

𝑅 → 𝑏

𝑅 → 𝑐

(Chomsky, 1956)

rule <- a / “b” / c (Ford, 2004) – forward slash

<rule>::=<a> | b | <c> (Backus, 1957)

Page 6

rule=a | “b” | c. (Wirth, 1977)

rule: a | b | c (ANSI, 1989)

rule=a | “b” | c; (ISO, 1997) – forward slash and
exclamation mark are permitted symbols

[abc] or a | b | c (Thomson, 1968)

Pipeline

A pipeline (Nelms, 2016) is a sequence of two or more expressions

evaluated simultaneously, with the production from an expression in the

chain sent to its successor in the pipeline sequence. Pipelines are common

operating system features and are significant in many grammars. Notably

pipelines are not a feature of the grammar-languages examined here.

The colon (:) symbol is suggested (Nelms, 2016) as a notation to separate

expressions in a pipeline.

Example Notation Source

rule = a : b : c; (Nelms, 2013)

Empty Sequence

The empty sequence consists of an empty sequence of terminals. The empty

sequence always evaluates to true.

Example Notation Source

𝑛𝑎𝑚𝑒 → 𝜀 (Chomsky, 1956)

None given (Ford, 2004) – forward slash

None given (Backus, 1957)

None given (Wirth, 1977)

None given (ANSI, 1989)

name=a, ,c; (ISO, 1997)

None given (Thomson, 1968)

Predicate

Syntactic predicates (Ford, 2004) add characteristics to primaries that

simplify grammars. The two predicates defined by Ford are ‘not’ and ‘and’.

BS6154 includes a form of predicate known as an exception.

• The ‘not’ predicate continues evaluation of the sequence when the

expression evaluates to false; no input is consumed and no output

produced. It is equivalent to a BS6154 exception.

• The ‘and’ predicate continues evaluation of the sequence when the

expression evaluates to true; no input is consumed and no output

produced

• The ‘again’ predicate (Nelms, 2016) continues evaluation of the

sequence when the expression evaluates to true; no input is

consumed, but output is produced. It permits repeated evaluation of

the same input. The && syntax is suggested as a notation to indicate

again predicates in grammars

Not predicate (not b) And predicate (and b) Again predicate (again

b)
Source

None given None given None given (Chomsky, 1956)

name=!b a; name=&b a; None given (Ford, 2004)

None given None given None given (Backus, 1957)

None given None given None given (Wirth, 1977)

Page 7

None given None given None given (ANSI, 1989)

name=a-b; name=a-b; None given (ISO, 1997)

None given None given None given (Thomson, 1968)

None given None given name=&&b, a; (Nelms, 2016)

Entity and Entity Reference

Entity is a term used to describe re-usable text with an XML or HTML

document. XML/HTML entity references use the ' notation, or �A;

indicating a hexadecimal character value. In languages like C the back-slash

character prefixes either a predefined entity such as newline (\n) or a

character specified in hex (\x0A). In Unix shells ${name} is used to reference

environment variables. We use the term entity to describe these types of

reference.

Entities and entity references are not a part of the meta-languages described

here, but we believe them to be a useful concept in grammars for

consumption of input and production of output.

Entity references placed in terminals (Nelms, 2016) could use the syntax

described for XML/HTML, C or shell to reference entities. A rule with a single

terminal defines an entity.

Example Notation Source

a = “a\n”;

a = “${newline}”;

<terminal>'</terminal>

(Nelms, 2013)

Summary

A table showing a comparison of the grammars described is shown in the

appendix. The comparison in this section forms the basis for a common

model for grammars defined in the next section.

Page 8

A Common and Extensible Model for Grammars
A Comparison of Language Grammars (Nelms, 2013) described the common

features of grammars expressed in a variety of notations. This section

describes a common model and semantics for grammars with the following

features:

• Grammar

• Rule

• Rule reference (non-terminals)

• Entity

• Entity reference

• Terminal string (parsing and production)

• Sequence

• Option

• Repetition

• Group

• Choice

• Pipeline

• Predicates

• Empty sequence

• Comment

Characteristics of the Common Grammar Model

In addition to the concepts introduced in a comparison of language

grammars the common grammar model also introduces the following:

• Attributes – a means of specifying and extending grammar

characteristics

• Identity – an attribute used for rules, but now extended to supported

arbitrary addressing of other parts of the grammar

• Echo – attribute used to redirect parser input to parser output

• Predicates – a new predicate ‘again’ is added to the ‘and’ and ‘not

predicates

• Encoding –for terminals

• Input/Output – a unified model for expressing the input and output of

grammars and primaries that includes abstract syntax trees (ASTs)

and linear storage such as files

• Parent-child relationships – the unified model defines the parent-child

relationship that can exist between rules, sequences, groups, options,

iterations and other parts of the model

Page 9

Figure 1: A Common Model for Language Grammars

com.nets3.grammar

«business»
Rule

«business»
Ruleref

idref

«business»
Primary

id

echo

predicate

breakpoint

encoding

input

output

onebefore

onafter

onerror

«business»
Iteration

minoccurs

maxoccurs

«business»
Option

«business»
Group

«business»
Terminal

value

encoding

«business»
Script

value

«business»
Grammar

id

description

«business»
Sequence

«business»
Choice

«business»
Empty

«business»
Pipeline

«business»
Range

min

max

«business»
Entityref

idref

«business»
Special

value

«business»
Entity

«business»
Text

«business»
Comment

*1

*

1

parent

child

Parent-child relationship is
valid for rule, sequence,
choice, iteration, option and
group

Class Diagram - com.nets.grammar

Onetic New

Page 1 of 1

Wednesday, August 31, 2016 12:39:38

Page 10

An EBNF Representation of The Common Model of
Language Grammars
The following table describes a notation for grammars using EBNF.

Concept Description Grammar XML Notation

Grammar A collection rules identified by a unique name

and with an optional description.

File name

eg. myfile.g

Primary An abstract concept that includes rulerefs,
entityrefs, terminals, sequences, choices,
options, repetitions, groups and empty
sequences.

None

Attributes A primary may include attributes to define

common characteristics including identity, echo,
predicate, breakpoint, encoding, input, output
and actions. These characteristics may be used
with any primary including Empty. These should
be defined after the primary with any custom
attributes added at the end of the attribute list.

rule = ruleref breakpoint=”true”;

rule = “Hello” breakpoint=”true”

custom=”here”;

Rule The definition of a parsing or production rule

identified by a unique name

rule = … ;

 Rule Reference A reference to a parsing or production rule or
entity

rule = rulearef;

Entity The definition of an entity with a single terminal. Entity = “string”;

 Entity Reference – C A reference to an entity from a terminal in the C

style

rule = “\n”; (*newline*)

rule = ?\x010?; (*hex 10*)

 Entity Reference -
Shell

A reference to an entity from a terminal in the
shell style

rule = “${input}”; (*input reference*)

rule = ?${entityref}?;

Terminal String A literal string used for parsing or production

whose content is a C99 string

None

 Parse String Parses and compares the input to string rule = “literal”;

 Production String Produces the string as output rule = ?output literal?;

 Encoding Defines either multi-byte or wide character
strings, using the C style L predicate to strings;
any entity references use the declared encoding

rule = L”literal”; (*Wide literal*)

rule = ”literal”; (*MBCS literal*)

rule = L?literal? (*Wide literal*)

Sequence A sequence of primaries evaluated in order. rule = rulea, ruleb, rulec;

Group A sequence of primaries evaluated in order.
Provided for traceability with traditional
notations.

rule = (rulea, ruleb);

Option An optional sequence of primaries evaluated in

order

rule = [rulea, ruleb];

Repetition A sequence of primaries evaluated in order zero
or more times. Frequency can be controlled
with minoccurs and maxoccurs as follows

rule = {rulea, “literal”};

 Fixed Repetition A sequence of primaries evaluated n times. rule = 4*rulea;

 Range Repetition A sequence of primaries evaluated at least n
times and no more than m times.

rule = {ruleref} minoccurs=”n”

maxoccurs=”m”;

 Minimum Repetition A sequence of primaries evaluated at minimum

n times.

rule = {ruleref} minoccurs=”n”;

 Maximum Repetition A sequence of primaries evaluated a maximum

n times.

rule = {ruleref} maxoccurs=”m”;

Choice A sequence of primaries evaluated in order of
which the first valid primary is chosen

rule = rulea|ruleb|rulec;

Pipeline A sequence of two or more expressions
evaluated simultaneously, with the production
from one primary in the chain sent to its
successor in the pipeline sequence.

rule = asciitoUTF-8 : bas64encode;

Page 11

An XML Representation of The Common Model of
Language Grammars
The following table describes a notation for grammars using XML.

Exception An exception follows a primary using a “-”
symbol. If the exception evaluates to false,
reset the parser state and continue.

rule = rulea – ruleb;

Equivalent to:

Rule = rulea, !ruleb;

Predicate Either a not or and condition linked to any
primary.

 And Predicate If the primary evaluates to true, reset the parser
state and continue

rule = &rulea, rulea;

 Not Predicate If the primary evaluates to false, reset the

parser sate and continue

rule = !rulea, ruleb;

 Again Predicate If the primary evaluates to false, reset the parser

sate and continue; keep the output

rule = &&rulea, ruleb;

Empty The empty sequence. Rule = rulea, ;

Comment Comment to the grammar. (* Comment here *)

Concept Description Grammar XML Notation

Grammar A collection rules identified by a unique name
and with an optional description.

<grammar id=”name” description=”My

Grammar”> … </grammar>

Primary An abstract concept that includes rulerefs,
entityrefs, terminals, sequences, choices,
options, repetitions, groups and empty
sequences.

None

Attributes A primary may include attributes to define

common characteristics including identity, echo,
predicate, breakpoint, encoding, input, output
and actions. These characteristics may be used
with any primary including Empty. These should
be defined after the element name with any
custom attributes added at the end of the
attribute list.

<rule>

 <ruleref id=”name”

breakpoint=”true”> … </ruleref>

</rule>

Identity Identity is required for Grammars and Rules
using the id attribute. Optionally Identity may be
applied to any primary, which allows referencing
from Rule References.

<iteration id=”it1”> … </iteration>

Rule The definition of a parsing or production rule

identified by a unique name

<rule id=”name”> … </rule>

Rule Reference A reference to a parsing or production rule <ruleref idref=”name”>

Terminal String A literal string used for parsing or production

whose content is text and entity references

<terminal> literal </terminal>

 Parse String Parses and compares the input to string <terminal> literal </terminal>

 Production String Produces the string as output <special> literal </special>

 Encoding Defines either multi-byte or wide character strings
using the encoding attribute; any entity
references use the declared encoding

<terminal encoding=”wchar”> literal

</terminal>

<special encoding=”char”> literal

</special>

 Entity Reference -
Shell

A reference to an entity from a terminal in the
shell style

<terminal>${input}</terminal>

<special>${entityref}</special>

 Entity Reference -
XML

A reference to an entity from a terminal in the
XML style

<terminal>&entityref;</terminal>

<special>
</special>

Sequence A sequence of primaries evaluated in order. <sequence> … </sequence>

Group A sequence of primaries evaluated in order.

Provided for traceability with traditional
notations.

<group> … </group>

Page 12

Summary

A common and extensible model for grammars allows grammars to be more

readily defined and reused. This section defines an XML grammar language

that offers a grammar model that can be extended to support the practical

needs of parsers. In addition the model has been designed as a superset of

grammars from (Chomsky, 1956), (Backus, 1957), (Wirth, 1977), (Ford,

2004), (Thomson, 1968), (BSI, 1981) and (ANSI, 1989) so they can be

mapped to this common model and back again if required.

Option An optional sequence of primaries evaluated in
order.

<option> … </option>

Repetition A sequence of primaries evaluated in order zero
or more times. Frequency can be controlled with
minoccurs and maxoccurs as follows

<iteration> … </iteration>

 Fixed Repetition A sequence of primaries evaluated n times. <iteration minoccurs=”n”

maxoccurs=”n”> … </iteration>

 Range Repetition A sequence of primaries evaluated at least n

times and no more than m times.

<iteration minoccurs=”n”

maxoccurs=”m”> … </iteration>

 Minimum Repetition A sequence of primaries evaluated at minimum

n times.

<iteration minoccurs=”n” > …

</iteration>

 Maximum Repetition A sequence of primaries evaluated a maximum
n times.

<iteration maxoccurs=”n”> …

</iteration>

Choice A sequence of primaries evaluated in order of
which the first valid primary is chosen.

<choice> … </choice>

Pipeline A sequence of two or more expressions
evaluated simultaneously, with the production
from one primary in the chain sent to its
successor in the pipeline sequence.

<pipeline>

 <ruleref idref= asciitoUTF-8”/>

 <ruleref idref=”bas64encode”/>

</pipeline>

Predicate Either a ‘not’, ‘and’ or ‘again’ condition linked to
any primary.

None

 And Predicate If the primary evaluates to true, reset the parser

state and continue

<ruleref predicate=”and”/>

 Not Predicate If the primary evaluates to false, reset the parser

sate and continue

<ruleref predicate=”not”/>

 Again Predicate If the primary evaluates to false, reset the parser
sate and continue; keep the output

<ruleref predicate=”again”/>

Comment Comment to the grammar. <!-- Comment here -->

Page 13

Practical Considerations for Parsers
This final section looks at practical considerations for grammars necessary
for building parsers and generators.

Parsers and Grammars

Parsers are the implementation of grammars. They can be either interpretive

or compiled. Interpretive parsers such as those used for regular expressions

read the grammar and use it to parser some input and usually generate an

output. Compiled parsers are written in a language such as C or Java and

are often generated from grammars. They also read some input and

generate an output, but only for one grammar. GREP is an example of an

interpreter for grammars and LEX/YACC is an example of a parser generator

for grammars.

Grammars are rarely portable between interpretive and compiled parsers.

Input and output

Parsers act upon some input and generate an output. This may be as simple

as a one-to-one mapping (an echo) between source and destination or it may

involve a complex domain specific mapping. It is not unusual for the mapping

between the source domain model and the target domain model to be a

multi-stage process resulting in output from the resulting domain model.

Parsers and interpreters therefore need to read and write from common

sources like files, pipes and memory but also complex forms like the

elements & attributes in an AST. A common model for addressing these

types of input and output remains elusive and defining the input and output of

a parser is usually implementation specific concern. A model for defining

input and output that addresses file, pipe, memory and AST’s would help

make parsers grammars more useful and potentially more readily

transferable to new platforms.

Abstract Syntax Trees

In computer science an abstract syntax tree represents the structure of the

input ie. if the source represents contact data the AST may have nodes

corresponding to name, address and telephone number. In many respects

ASTs have much in common with Document Object Models found in web

browsers having nodes with a hierarchy of parents and children.

The relationship between the document object model and the grammar is

usually implementation specific and often requires coding.

Given the practical use of grammars to build AST’s it is surprisingly difficult to

trace the relationship between a grammar and its corresponding AST. A

declarative approach to linking ASTs to grammars is important to making

complex multi-stage parsers easy to create.

Encoding

The encoding of the input and output require grammars to identify the

encoding of parsing and production strings. Alternatively all input and output

must be converted into some uniform intermediate encoding. Defining the

internal representation of parsing and production strings is essential to

handle legacy multi-byte encoded data and more modern Unicode encoded

data.

Character Classification

Practical consideration must be given to character classification, for example

the common need to express alphabetic characters, upper case and lower

and numbers as ranges rather than a choice. Regular expressions use a

number of notations to express this [:upper:] or \u or [A-Z] which are either a

Page 14

reference to a pseudo rule or a range descriptor. Both are requirements for

practical purposes.

Actions

A parsing or generating process will need to perform actions (in addition to

populating the AST) during processing. Formal language grammars do not

define actions, but many tools provide extensions that allow actions to be

defined, however, there is usually no declarative way of linking grammars

with their actions without mixing code fragments with grammar.

Making a clear separation between the grammar and the action code is

necessary if grammars are to be reused for parsers built using different

languages. But having a clear relationship between grammar and the action

code through declaration is also desirable.

A common approach for declaring actions in grammars is needed, whilst

delivering code optimized for the target environment.

Debugging

A further desirable feature for parsers is to provide debugging and error

reporting. The most common needs are to be able to define places in the

grammar where such actions are to occur and error message required.

A Grammar XML Representation of Practial Parser

Features
The following table describes a notation for grammars using Grammar XML.

The same attribute tags may be used with NETS3 EBNF extensions.

Concept Description Grammar XML Notation

Ignore Case Ignore the case of a string when comparing the
input of a primary.

<terminal ignorecase=”true”/>

<group ignorecase=”true”> … </group>

Input and Output Input or output for a primary may be file, pipe,

memory, element, attribute or property.

<ruleref input=”test.in”>

Echo Indicates whether a primary is a parsing rule, a
production rule or both. When “false” or “in”
indicates input only – when “true” or “inout”
indicates echoing input to output, when “out”
indicates only output.

<ruleref echo=”false”/> or <ruleref

echo=”in”/>

<ruleref echo=”true”/> or <ruleref

echo=”inout”/>

<ruleref echo=”inout”/>

File Input/Output Input or output of a primary to a file <ruleref input=”test.in”> or

<ruleref input=”file:test.in”>

Pipe Input/Output Input or output of a primary to a pipe – may be
either stdin, stdout or stderr or a filename.

<ruleref input=”pipe:stdin”> or

<ruleref input=”pipe:test.in”>

Memory
Input/Output

Input or output of a primary to memory – the string
following the “mem:” specifier is used.

<ruleref input=”mem:some text here”>

<ruleref input=”m:some text here”>

Abstract Syntax
Trees

ASTs use elements and attributes to define the
tree structure. In addition properties are global
resources.

None

Element
Input/Output

Input or output of a primary to an element in an
AST. By default the parent element is assumed to
be the last element.

< ruleref input=”element:name”>

< ruleref input=”e:name”>

Attribute
Input/Output

Input or output of a primary to an attribute of an
element in an AST. By default the parent element
is assumed to be the last element.

< ruleref input=”attribute:name”>

< ruleref input=”a:name”>

Text node

Input/Output

Input or output of a primary to a text node in the

AST. Text nodes are named #text

< ruleref output=”textnode:”>

< ruleref input=”textnode:”>

Entity Reference
Input/Output

Input or output of a primary to an entity reference in
the AST.

< ruleref output=”entityref:”>

Property

Input/Output
Input or output of a primary to a grammar entity.. < ruleref input=”property:name”>

< ruleref input=”p:name”>

Page 15

Grammar Libraries
Grammar libraries define reusable rules and entities provided by inbuilt or
third party libraries. Libraries provide the opportunity to not only reuse
declarative grammars but also introduce algorithmic processes and
procedures into grammars that are opaque in their operation.

For example the libraries in the core NETS3 parser include nets-ctype for
character classification and nets-XML for entity definitions.

C-Type Library

The nets-ctype grammar library defines common character classifications

and entity references. This library also supports custom character ranges

using a minimum to a maximum value. Variants are provided for multi byte

and wide character strings.

Rules

Character
Classification

Character classification comes in two forms.
Pseudo rules define common character
classifications and can be referenced using Rule
References. Classifications are implementation
defined but at a minimum should include alnum,
alpha, ascii, char, cntrl, digit, graph, lower, print,
punct, space, upper and xdigit. The “char” pseudo
rule indicates any character.

<ruleref idref=”alpha”/>

<ruleref idref=”digit”/>

Character Ranges A ruleref may optionally define a character range

using the max and min attributes. These are only
used when the “range” pseudo rule is referenced.

<ruleref idref=”range” min=”48”

max=”57”/>

Equivalent to

<ruleref idref=”digit”/>

Actions The actions associated with a primary including

before execution, after successful execution and
after erroneous execution.

<ruleref onbefore=”execute_before”

onafter=”execute_after”

onerror=”execute_error_handler”/>

Script To define Scripts or code <script>My Script</script>

Debugging and
Breakpoints

An action to pause the running of a parser when
this part of the grammar is reached.

<ruleref breakpoint=”true”/>

Concept/Rule Description Usage

alnum A union of the alpha and digit classifications <ruleref idref=”alnum”/>

alpha Any alphabetic character in the current locale <ruleref idref=”alpha”/>

ascii Any asci 7 bit character in the current locale <ruleref idref=”ascii”/>

char Any multibyte character in the current locale <ruleref idref=”char”/>

cntrl Any control character in the current locale <ruleref idref=”cntrl”/>

digit Any decimal digit in the current locale <ruleref idref=”digit”/>

lower Any lower case letter in the current locale <ruleref idref=”lower”/>

print Any printable character in the current locale <ruleref idref=”print”/>

punct Any punctuation character in the current locale <ruleref idref=”punct”/>

space Any space character in the current locale <ruleref idref=”space”/>

upper Any upper case character in the current locale <ruleref idref=”upper”/>

xdigit And hexadecimal digit in the current locale <ruleref idref=”xdigit”/>

range And character with the min and max range defined

in the current locale

<ruleref idref=”range” min=”10”

max=”20”/>

min attribute Minimum character value

max attribute Maximum character value

walnum A union of the walpha and wdigit classifications <ruleref idref=”walpha”/>

walpha Any alphabetic wide character in the current locale <ruleref idref=”walpha”/>

wascii Any asci 7 bit wide character in the current locale <ruleref idref=”wascii”/>

Page 16

Entities

XML Library

The nets-XML grammar library defines common entity references for

grammars defined using XML grammar notation.

Iconv Library

A practical consideration for parsers is how to interpret character streams

and ensure that they support a range of uses that include not just the

traditional 7 or 8 bit character sets like ASCII, Latin-1 etc... The Unicode

standard offers a model for a wide range of characters and its use in

grammars ensures that the range of characters and their classification

supported by a parser is known and consistent.

A practical consideration for parsers is that legacy systems use a mix of

single byte, multi-byte and variable byte encodings. Parsers therefore need

wchar Any multibyte wide character in the current locale <ruleref idref=”wchar”/>

wcntrl Any control wide character in the current locale <ruleref idref=”wcntrl”/>

wdigit Any decimal wide digit in the current locale <ruleref idref=”wdigit”/>

wlower Any lower case wide character in the current

locale

<ruleref idref=”wlower”/>

wprint Any printable wide character in the current locale <ruleref idref=”wprint”/>

wpunct Any punctuation wide character in the current

locale

<ruleref idref=”wpunct”/>

wspace Any space wide character in the current locale <ruleref idref=”wspace”/>

wupper Any upper case wide character in the current
locale

<ruleref idref=”wupper”/>

wxdigit Any hexadecimal wide digit in the current locale <ruleref idref=”wxdigit”/>

wrange Any wide character with the min and max range
define in the current locale

<ruleref idref=”wrange” min=”10”

max=”20”/>

Concept/Entity Description Usage

\a x07 Beep <terminal>&\n;</terminal>

\b x08 Backspace <terminal>&\b;</terminal>

\t x09 Horizontal Tab <terminal>&\t;</terminal>

\n x0A Newline <terminal>&\n;</terminal>

\v x0B Vertical Tab <terminal>&\v;</terminal>

\f x0C Form Feed <terminal>&\f;</terminal>

\r x0D Carriage Return <terminal>&\r;</terminal>

\” x22 Double Quote <terminal>&\”;</terminal>

\’ x27 Single Quote <terminal>&\’;</terminal>

\? x3F Question Mark <terminal>&\?;</terminal>

\\ x5C Backslash <terminal>&\\;</terminal>

\xnn Any character code nn defined in hexadecimal “\x64”

Concept/Entity Description Usage

lt Less than <terminal><</terminal>

gt Greater than <terminal>></terminal>

amp Ampersand <terminal>&</terminal>

apos Single quote <terminal>'</terminal>

quot Double quote <terminal>"</terminal>

#nnn Any character code nnn defined in decimal <terminal>@</terminal>

Page 17

to recognize and convert between these encodings consistently for input and

output. Not only this but some containers may use one or more encodings in

a single stream of input.

Iconv is a utility for converting text between character sets and is defined as

part of the Posix standard. The iconv grammar library supports conversion of

strings using any combination of source and target character sets using the

input_encoding and output_encoding attributes.

Note: Future revisions of this paper will add more declarative notations for

practical parser needs.

Summary.

This section reviewed practical considerations for parsers and how

declaratively linking grammars with their domain model or AST provides

better traceability between the two and has the potential to simplify the

process of defining grammars. Furthermore combining AST’s with the input

output model simplifies and unifies a key practical consideration for parsers.

Finally declaratively addressing encodings, character classification, actions,

breakpoints and echo behaviour also has clear benefits for writers of parsers.

Concept Description Usage

Iconv rule iconv <rule ruleref=”iconv”

input_encoding=”ASCII”

output_encoding=”WCHAR_T”>

Input encoding

attribute
The source encoding for the iconv conversion

Output encoding

attribute
The target encoding for the iconv conversion

Page 18

Conclusion
A common model for grammars allows grammars to be more readily defined

and reused. A Comparison of Language Grammars (Nelms T. , 2013)

defines the common characteristics of language grammars through

comparison of their notations. “A Common and Extensible Model for

Language Grammars” (Nelms T. , 2013) defines a common model through

which all common notations could be expressed. “Practical Considerations

for Parsers” examines how a common model could be extended to suit the

practical needs of parsers and extension through grammar libraries.

nets3 Limited

21 Greatfield Drive, Charlton Kings, Leckhampton, Cheltenham, Gloucestershire, GL539BT
+44 7968 489105

www.nets3.com

nets3 is a registered trademarks of nets3 Limited in the United Kingdom and other countries. All other
trademarks used herein are the property of their respective owners. © 2013 nets3 Limited. All rights reserved.
Produced in the UK. 07/13

Contact Us

To learn more about nets3 visit us at

www.nets3.com

References
ANSI. (1989). ANSI X3.159-1989. New York: American National Standard
Institute.

Backus, J. W. (1957). The Syntax and Semantic of the Proposed
International Algebraic Language. Zurich: Proceedings of the International
Conference on Information Processing, UNESCO.

BSI. (1981). BS-6154:1981 Method of Defining - Syntactic Metalanguage.
London: BSI (British Standards Institution).

Chomsky, N. (1956). Three Models for the Description of Language.
Cambridge: Massachusetts Institute of Technology.

Ford, B. (2004). Parsing Expression Grammars: A Recognition Based
Syntactic Foundation. Proceedings of the 31st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. ACM
doi:10.1145/964001.964011. ISBN 1-58113-729-X. .

ISO. (1997). ISO 14977 - A Standard Syntactic Metalanguage. www.iso.org.

Jinks, P. (2005). Peter Jinks BNF/EBNF Variants. Retrieved from Manchester
University: http://www.cs.man.ac.uk/~pjj/bnf/ebnf.html

Kleene, S. C. (1956). Representation of Events in Nerve Nets and Finite
Automata. Princeton University Press.

Thomson, K. (1968). Regular Expression Search Algorithm.
Connmunications of the ACM Volume 11 / Number 6, 419-422.

Wirth, N. (1977). What Can We Do about the Unnecessary Diversity of
Notations for Syntax Definitions? Communications of the ACM (pp. Pages
822-823). New York: ACM.

Version History

Version 0.3 first published 16th July 2013

Version 0.4 published 3rd October 2013.

Version 0.5 published August 2016

Version 0.6 published September 2016

Contacts
For more information please contact:

Tim Nelms, timnelms@nets3.com, +44 7968 489105

A Common Model for Language Grammars - Comparison of Grammar Meta-Languages

September 2016

Meta-language Grammar (name) Rule (name) Terminal (t)
consumption

Terminal (t)
production

Non-Terminal
(name2)

Sequence Option Group Choice Pipeline

Chomsky, 1956 None given 𝑛𝑎𝑚𝑒 → None given 𝑛𝑎𝑚𝑒 → 𝑡 𝑛𝑎𝑚𝑒 → 𝑎 𝑛𝑎𝑚𝑒 → 𝑎𝑏𝑐 𝑛𝑎𝑚𝑒 → 𝑎 𝑏 𝑐

𝑛𝑎𝑚𝑒 → 𝑎 𝑐

None given 𝑛𝑎𝑚𝑒 → 𝑎

𝑛𝑎𝑚𝑒 → 𝑏

𝑛𝑎𝑚𝑒 → 𝑐

None given

Ford, 2004 None given 𝑛𝑎𝑚𝑒 ← name <- t None given name <- name2 or

[A-Z] or .
name <- a “b” c name <- a “b”? c None given name <- a / “b” / c None given

Backus, 1957 None given <name>::= <name>::=t None given <name>::=<name2> <name>::=<a> b

<c>

<name>::= <a> “b”

<c> | <a> <c>
None given <name>::=<a> | b |

<c>
None given

Wirth, 1977 None given name= . name=“t”. None given name=name2. name=a “b” c. name=a [“b”] c. None given name=a | “b” | c. None given

ANSI, 1997 None given name: name: t None given name: name2 name: a b c name: a [b] c None given name: a | b | c None given

ISO, 1997 None given name= ; name=‘t’; None given name=name2, first-
quote-symbol;

name=a, “b”, c; name=a, [“b”], c; name=a, (“b”, c); name=a | “b” | c;

Thomson, 1968 None given None given t None given abc ab?c None given [abc] or a | b | c None given

Nelms, 2013 <grammar
id=”name”>…

</grammar>

<rule id=”name>

</rule>

<terminal>t

 </terminal>

<special>t

</special>

<rulref
idref=”name2”>…

</ruleref>

<sequence>…

</sequence>

<option>…

</option>

<group>…

</group>

<choice>…

</choice>

<pipeline>…

</pipeline>

Meta-language Repetition Repetition 1+ Repetition n=4 Not predicate (not b) And predicate (and b) Again predicate (again b) Entity (name) Entity reference
(name)

Attributes (name,value)

Chomsky,
1956

𝑛𝑎𝑚𝑒 → 𝜀

𝑛𝑎𝑚𝑒 → 𝑎 𝑏 𝑐 𝑅

𝑛𝑎𝑚𝑒 → 𝑎 𝑏 𝑐 𝑅

𝑛𝑎𝑚𝑒 → 𝜀

𝑛𝑎𝑚𝑒 → 𝑎 𝑎 𝑎 𝑎 None given None given None given None given None given None given

Ford, 2004 name <- a “b”* c name <- a “b” “b”*
c

name <- a a a a name=!b a; name=&b a; None given None given None given None given

Backus, 1957 <name>::= | <a>
“b” <c> <name>

<name>::= <a>
“b” <c> <name> |

<name>::= <a> <a>
<a> <a>

None given None given None given None given None given None given

Wirth, 1977 name=a {“b”} c. name=a “b” {“b”}
c.

name=a a a a. None given None given None given None given None given None given

ANSI, 1997 name: a {b} c name: a b {b} c name: a a a a None given None given None given None given None given None given

ISO, 1997 name=a, {“b”}, c; name=a, ”b”, {“b”},
c;

name=4*a; name=a-b; name=a-b; None given None given None given None given

Thomson,
1968

ab*c abb*c Non given None given None given None given None given None given None given

Nelms, 2013 <iteration>…

</iteration>

<iteration

minoccurs=”1”>

</iteration>

<iteration

minoccurs=”4”
maxoccurs=”4”>

</iteration>

<primary

predicate=”not”>…

</primary>

<primary

predicate=”and”>…

</primary>

<primary

predicate=”again”>…

</primary>

<entity id=”name”>…

<terminal>t</terminal>

</entity>

<terminal>&name;

</terminal>

<primary name=”value”>

</primary>

Meta-language Empty sequence Character classes Echo Case insensitivity Breakpoint Encoding (terminal)

Chomsky,
1956

𝑛𝑎𝑚𝑒 → 𝜀 None given None given None given None given None given

Ford, 2004 None given None given None given None given None given None given

Backus, 1957 None given None given None given None given None given None given

Wirth, 1977 None given None given None given None given None given None given

ANSI, 1997 None given None given None given None given None given None given

ISO, 1997 name=a, ,c; None given None given None given None given None given

Thomson,
1968

None given [:upper:] or \u or [A-Z]
or .

None given None given None given None given

Nelms, 2013 <empty/> <rulref idref=”alpha”/>

<rulref idref=”range”
min=”10” max=”61”/>

<rulref idref=”rule”
echo=””/>

<rulref idref=”rule”
ignorecase=””/>

<rulref idref=”rule”
breakpoint=””/>

<terminal encoding
=”wchar”>xyz</terminal>

	Nets3 - A Common Model for Language Grammars 1.0 FULL
	Abstract
	A Comparison of Language Grammars
	Grammar
	Rules
	Primary
	Terminal
	Consumption Terminal
	Production Terminal

	Non-Terminal
	Sequences
	Group
	Option
	Repetition
	Choice
	Pipeline
	Empty Sequence
	Predicate
	Entity and Entity Reference
	Summary

	A Common and Extensible Model for Grammars
	Characteristics of the Common Grammar Model

	An EBNF Representation of The Common Model of Language Grammars
	An XML Representation of The Common Model of Language Grammars
	Summary

	Practical Considerations for Parsers
	Parsers and Grammars
	Input and output
	Abstract Syntax Trees
	Encoding
	Character Classification
	Actions
	Debugging

	A Grammar XML Representation of Practial Parser Features
	Grammar Libraries
	C-Type Library
	Rules
	Entities

	XML Library
	Iconv Library
	Summary.

	Conclusion
	References
	Version History

	Contacts

	Nets3 - A Common Model for Language Grammars 1.0 Appendix

